X-gateway Interface Addendum Modbus RTU Slave

Doc: HMSI-27-252 Rev: 2.00

HALMSTAD · CHICAGO · KARLSRUHE · TOKYO · BEIJING · MILANO · MULHOUSE · COVENTRY · PUNE · COPENHAGEN

Important User Information

This document is intended to provide a good understanding of the functionality offered by the Interface described here.

The reader is expected to be familiar with high level software design, and communication systems in general. The use of advanced interface-specific functionality may require in-depth knowledge of networking internals and/or information from the network specifications. In such cases, the persons responsible for the implementation of this product should either obtain the necessary specifications to gain sufficient knowledge, or alternatively limit the implementation in such a way that this is not necessary.

Liability

Every care has been taken in the preparation of this manual. Please inform HMS Industrial Networks AB of any inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial Networks AB, reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be considered as a commitment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the necessary steps have been taken to verify that the applications meet all performance and safety requirements including any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features, timing, or functional side effects found outside the documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot assume responsibility for actual use based on these examples and illustrations.

Intellectual Property Rights

HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product described in this document. These intellectual property rights may include patents and pending patent applications in the US and other countries.

Trademark Acknowledgements

Anybus ® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their respective holders.

WARNING: This is a class A product. in a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

ESD Note: This product contains ESD (Electrostatic Discharge) sensitive parts that may be damaged if ESD control procedures are not followed. Static control precautions are required when handling the product. Failure to observe this may cause damage to the product.

Modbus RTU Slave X-Gateway Interface Addendum Copyright© HMS Industrial Networks AB Doc: HMSI-27-252, Rev: 2.00 May 2014

!

Table of Contents

Preface	About This Document	
	How To Use This Document	P-1
	Important User Information	P-1
	Related Documents	P-2
	Document History	P-2
	Conventions & Terminology	
	Support	P-3
Chapter 1	About the Modbus RTU Slave Interface	
	General Description	1-1
	Features	1-1
	External View	
	Modbus RTU Status LEDs	
	Connectors and Switches	
Chapter 2	Installation and Configuration	
	Node ID Configuration	2-1
	Baudrate Configuration	2-1
	Parity and Stop Bits Configuration	2-2
	Physical Interface	
	Network Termination	
	Gateway Config Interface	2-3
Chapter 3	Data Exchange	
	General Information	
	Modbus Exceptions	
	Coil & Register Map	
	Modbus Diagnostics	
Appendix A	Technical Specification	
	Modbus RTU Interface Details	A-1
	Modbus RTU Connector Pinout	A-1

P. About This Document

P.1. How To Use This Document

This document describes the various features of the Modbus RTU Slave interface, basic network installation procedures and various network specific details. General information and operating instructions for the X-gateway is available in the Anybus X-gateway User Manual.

The reader of this document is expected to be familiar with the Modbus RTU networking system, and communication systems in general.

For further information, documentation etc., please visit www.anybus.com.

P.2. Related Documents

Document name	Author
Anybus X-gateway User Manual	HMS
Anybus-S Modbus RTU Fieldbus Appendix	HMS

P.3. Document History

Revision List

Revision	Date	Author(s)	Chapter(s)	Description
1.00	2004-03-10	PeP	All	First release
1.02	2006-05-31	PeP	1,2	Minor update
1.03	2007-04-02	PeP	А	Minor update
1.10	2007-12-03	PeP	P, 1, 2, 3	Major rewrite
1.11	2008-05-21	PeP	-	Minor update
2.00	May 2014	SDA	All	New hardware and Anybus Configuration Manager

P.4. Conventions & Terminology

The following conventions are used throughout this document:

- Numbered lists provide sequential steps
- Bulleted lists provide information, not procedural steps
- The term 'X-gateway' is used when referring to the Anybus X-gateway
- The term 'Slave interface' is used when referring to the Modbus RTU Slave interface.
- The term 'user manual' is used when referring to the Anybus X-gateway User Manual.
- Hexadecimal values are written in the format NNNNh, where NNNN is the hexadecimal value.
- 16/32 bit values are generally stored in Motorola (big endian) format unless otherwise stated.

P.5. Support

For general contact information and support, please refer to the contact and support pages at www.anybus.com.

1. About the Modbus RTU Slave Interface

1.1. General Description

The Modbus-RTU Slave Interface for the X-gateway implements a passive Modbus-RTU slave node for the X-gateway platform. As a slave node, it can respond to Query's from a Modbus RTU Master, but will not initiate communication on its own.

The interface exchanges data through two buffers as follows:

• Input Buffer

This buffer holds data forwarded *from* the other network, and can be read by the Modbus Master.

• Output Buffer

This buffer is forwarded *to* the other network, and can be both read and written by the Modbus Master. Note however that the unidirectional nature of the X-gateway means it will still only be forwarded *to* the other network, never the other way around (for that purpose, use registers associated with the Input Buffer instead).

1.2. Features

- Modbus-RTU compliant, passive slave node operation
- Modbus diagnostics
- Up to 256 Modbus registers in each direction
- RS485 or RS232 operation
- Baudrates from 1200bps to 57600bps
- On-board configuration switches
- Galvanically isolated bus electronics

1.3. External View

1.3.1. Modbus RTU Status LEDs

LED	Colour Indication		
Gateway			
Status	Consult t	he user manual for further	
	details		
Processing	Green	Processing message	
	Off	Not processing	
Bus Error	Red	Bus error	
	Off	Normal operation	
Bus Ready	Green	Normal operation	
	Red	Bus timeout error	
	off	Bus not running	
HW Status	Red	Configuration switch error	
	Off	-	

1.3.2. Connectors and Switches

Modbus RTU network connector

See A-13 "Modbus RTU Connector Pinout".

Termination Switch

See 2-9 "Network Termination".

Configuration switches

See 2-8 "Installation and Configuration".

Gateway Power connector

Se the X-gateway user manual for further details.

USB Gateway Config connector

See the X-gateway user manual for further details.

Top-mounted Interface

Bottom-mounted Interface

2. Installation and Configuration

2.1. Node ID Configuration

Each node on a Modbus RTU network must be assigned a unique node ID. Seven switches are used to set the Modbus node ID of the Slave interface in binary form. The switches are read once during startup, i.e. the gateway must be restarted for any changes to have effect.

Switch 1	Switch 2	Switch 3	Switch 4	Switch 5	Switch 6	Switch 7	Switch 8 ^a	Node ID
OFF	-	(invalid)						
OFF	OFF	OFF	OFF	OFF	OFF	ON		1
OFF	OFF	OFF	OFF	OFF	ON	OFF		2
ON		127						

a. See 2-8 "Baudrate Configuration"

Example:

In this example, the Modbus node ID will be 42.

Note: Depending on if the Slave interface is top or bottom mounted, the orientation of the switches are different.

2.2. Baudrate Configuration

The standard baudrate of Modbus RTU is 19.2kbit/s. The Slave interface does however allow baudrates from 1.2kbit/s to 57.6kbit/s to be selected via the baudrate switches. The switches are read once during startup, i.e. the gateway must be restarted for any changes to have effect.

Switch 1- 7 ^a	Switch 8	Switch 1	Switch 2	Switch 3 ^b	Switch 4 ^b	Baudrate
-	OFF	OFF	OFF	-	-	(invalid)
	OFF	OFF	ON			1.2kbit/s
	OFF	ON	OFF			2.4kbit/s
	OFF	ON	ON			4.8kbit/s
	ON	OFF	OFF			9.6kbit/s
	ON	OFF	ON			19.2kbit/s (standard)
	ON	ON	OFF			38.4kbit/s
	ON	ON	ON			57.6kbit/s

a. These switches are used for Node ID configuration, see previous section.

b. This switch is used for Parity configuration, see next section.

Example:

In this example, the baudrate will be 1.2kbit/s.

Note: Depending on if the Slave interface is top or bottom mounted, the orientation of the switches are different.

2.3. Parity and Stop Bits Configuration

The Slave interface allows different parity settings to be selected via the parity switches. The switches are read once during startup, i.e. the gateway must be restarted for any changes to have effect.

Switch 1 ^a	Switch 2 ^a	Switch 3	Switch 4	Switch 5 ^b	Parity	Stop bits
-	-	OFF	OFF	-	(invalid)	(invalid)
		OFF	ON		None (Standard)	2 (standard)
		ON	OFF		Even	1
		ON	ON		Odd	†

a. See 2-8 "Baudrate Configuration"

b. See 2-9 "Physical Interface"

Example:

2 stop bits, no parity (Modbus RTU standard)

2.4. Physical Interface

The Slave interface supports RS232 and RS485 communication standards.

Switch 1 ^a	Switch 2 ^a	Switch 3 ^b	Switch 4 ^b	Switch 5	Physical Interface
-	-	-	-	OFF	RS485
				ON	RS232

a. See 2-8 "Baudrate Configuration"

b. See 2-9 "Parity and Stop Bits Configuration"

Example:

In this example, the physical interface is set to RS232.

2.5. Network Termination

The end nodes of a RS485-based Modbus RTU network must be terminated in order to avoid reflections on the bus line. The Slave interface features a termination switch, which is used to enable internal termination resistors.

Switch Position	Internal Termination
OFF	Disabled
ON	Enabled

The figure below shows the connection and the values of the internal termination and bias resistors. If the values does not match the network termination convention, external termination must be used.

2.6. Gateway Config Interface

The Modbus-specific settings in the X-gateway are configured with the help of Anybus Configuration Manager. See the Anybus X-gateway user manual for further information on using this tool..

When ACM is connected to the gateway via the USB configuration connector, the following settings are available:

A Network Type Modbus RTU Slave Name ▲ General Input Register data Size (bytes) 20 20 Output Register data Size (bytes) Clear Offline option Control word/Status word Disable • Fieldbus Specific Offline timeout (ms/0=disabled) 0

See also:

- The Anybus X-gateway User Manual, for full details on using ACM.
- The online help in ACM, for further help on the available settings.
- 3-11 "Data Exchange"
- 3-12 "Coil & Register Map"

3. Data Exchange

3.1. General Information

The Slave Interface acts as a passive node and as such it responds to incoming Querys and accepts broadcast messages. It will not initiate communication autonomously.

In the Anybus implementation, several Modbus functions are associated with the very same data. While this may appear confusing at first, it allows data to be manipulated in a very flexible manner (e.g. it is possible to manipulate individual bits of a register by accessing coils associated with the same memory location).

The following functions can be used to access data in the Slave Interface:

Modbus Function	Function Code	Direction	Associated with Buffer
Read Coil	1	Gateway to Modbus	Input- and Output Buffers
Read Input Discretes	2		
Read Holding Regis-	3		
ters			
Read Input Registers	4		
Write Coil	5	Modbus to Gateway	Output Buffer
Write Single Register	6		
Force Multiple Coils	15		
Force Multiple Regis-	16		
ters			
Mask Write Register	22		
Read/Write Registers	23	Bidirectional	Input- and Output Buffers

See also

• 3-12 "Coil & Register Map"

3.2. Modbus Exceptions

With the exception of broadcast messages, the Modbus Master expects it's slaves to respond within a certain defined time period. If no response is received (e.g. due to a transmission error), this eventually triggers a timeout condition in the Master.

If the Slave Interface receives a Query from the Master, but for some reason is unable to process it (e.g. the Master tries to access a non-existent Register), an Exception is returned to inform the Master of the nature of the problem.

The Slave Interface may issue the following Exception responses:

#	Meaning	Description
01h	Illegal Function	The Query contains an illegal or unsupported function call
02h	Illegal Data Address	The Query contains an illegal data address
03h	Illegal Data Value	The Query contains invalid data

3.3. Coil & Register Map

Register #	Coil #	Buffer	Location in Buffer	Comments
1	1 16	Input Buffer	000 001h	Applicable Modbus functions:
2	17 32		002 003h	- Read Coil
3	33 48		004 005h	- Read Input Discretes
4	49 64		006 007h	- Read Holding Registers
5	65 80		008 009h	- Read/Write Registers
6	81 96		00A 00Bh	č
7	97 112		00C 00Dh	
255	4065 4080		1FC 1FDh	
256	4081 4096		1FE 1FFh	
257 1024	4097 16384	-	-	(reserved)
1025	16385 16400	Output	000 001h	Applicable Modbus functions:
1026	16401 16416	Buffer	002 003h	- Read Coil
1027	16417 16432		004 005h	- Read Input Discretes
1028	16433 16448		006 007h	- Read Input Registers
1029	16449 16464		008 009h	- Write Coil
1030	16465 16480		00A 00Bh	- Write Single Register
1031	16481 16496		00C 00Dh	- Force Multiple Coils
				- Force Multiple Registers
1279	20449 20464		1FC 1FDh	- Mask Write Register
1280	20465 20480		1FE 1FFh	- Read/ withe Registers
1281	20481	-	-	(reserved)

The Input & Output Buffers are mapped to coils and registers as follows:

Note: Coils are mapped MSB first, i.e. coil 0 corresponds to bit 15 of register 0.

3.4. Modbus Diagnostics

The Modbus RTU interface features several diagnostic counters which increments each time the interface encounters certain pre-defined events. These counters may provide valuable clues when troubleshooting the Modbus communication, and can be accessed through the standard Modbus Diagnostic function (function code 08h).

#	Meaning	Description
00h	Return Query Data	Loopback; instructs the slave to return the data from the Query
0Ah	Clear Counters and Diagnostic Reg- ister	Clears all diagnostic counters
0Ch	Return Bus Communication Error Count	Returns the no. of detected CRC-errors
0Dh	Return Bus Exception Error Count	Returns the no. of exception responses previously returned by the slave
0Eh	Return Slave Message Count	Returns the number of messages addressed to the slave interface (broadcast included)

The following sub-functions are implemented:

A. Technical Specification

A.1. Modbus RTU Interface Details

- Media: RS485 or RS232 (specified via on-board switches)
- **Cable:** Shielded copper cable, twisted pair
- Topology: Master-slave communication
- Isolation: Galvanically isolated bus electronics
- **Baudrates:** 1.2kbit/s 57.6kbit/s (specified via on-board switches)
- Node ID Range: 1 127 (specified via on-board switches)
- Data size: Up to 256 registers in each direction

• Implemented Functions:

- 01h "Read Coil"
- 02h "Read Input Discretes"
- 03h "Read Holding Registers"
- 04h "Read Input Registers"
- 05h "Write Coil"
- 06h "Write Single Register"
- 08h "Diagnostics" (Sub-functions 0,10,12,13 and 14)
- 0Fh "Force Multiple Coils"
- 10h "Force Multiple Registers"
- 16h "Mask Write Register"
- 17h "Read/Write Registers"

A.2. Modbus RTU Connector Pinout

#	Signal
housing	Cable shield
1	-
2	RS232 Tx
3	RS232 Rx
4	-
5	Signal Ground ^a
6	+5V Output (50mA max.) ^a
7	RS485 Line B
8	RS485 Line A
9	-

a. These pins can be used to power external bias/termination circuitry, or external equipment such as media converters etc. The maximum current consumption of such equipment must not exceed 50mA.