iDSC Reference Manual

Intelligent Digital Signal Conditioning Manual
Hardware and Software Description
and Reference Guide

Version 5.20

Microstar Laboratories, Inc.

This manual contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
translated to another language without prior written consent of Microstar Laboratories,
Inc.

Copyright © 1997 - 2003

Microstar Laboratories, Inc.
2265 116th Avenue N.E.
Bellevue, WA 98004

Tel: (425) 453-2345
Fax: (425) 453-3199
http:// www.mstarlabs.com

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, DAPL, and
DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Novell and NetWare are registered trademarks of
Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Part Number MSIDSCM520

Contents

Section 1. Introduction

L. INEOAUCTION L.ttt ettt et e et ebe e e abeeeaeeeabeeeaseenveessseenneaan
About This Document
IDSC FUNAamentals.............ccueiiiiiiuiiiiiiiie ettt e eve e e e ennae
FAlter CRAraCteriStICSeeeveiierieitieeeiieeieeeteeetee et eeteeeteeeteeeereeeteeeeseebeeesseesseesaseereeennas
2. DSC Graphical Design .. .11
Individual Interface12
Input Screen................. .12
Filter DeSIZN SCICEIL.....c..eviuieiiriiriinienictcteeeie sttt 14
External Board SCIEENcccuieviiiiiiiiieciieciee ettt 16

Input Parameters... .20
Sample Rate20
Group Delay... ... 20
INPUt RANGE.....c.oiiiiiiiiiiiiiiicc e 20
FIIer NAIME ...ttt sttt 21
Enabled

Filter Design Parametersccoecveirininieniiieiiinieniee et 22
FIIer INAIME ...ttt sttt 22
Filter Type...... .22

Sharpness.... .22
Low Cutoff Frequency.... .22
Low Cutoff SIOPE.....coueruiriiiiiiieiereeesee ettt 23
High Cutoff FTEQUENCYcovevtiiiieiiiiiiieerenteeeeee e 23
High Cutoft Slope .
ATEIIUATION ..ttt ettt ettt st b et
Filter RESPOMSE.eoviiiiiiiiieiieiiittetesterte ettt
Linear Display.................
Linear Zoom Display
Log Display........cceue... .28
LOg Z0Om DISPIAY ...vevieiiieiieieeiieieeee ettt 29
Unit StEP DISPIAY ...vivieiieiiieieetiee ettt ettt 30
External Board Parametersoecvevueeieriieieniieieneeeesieeeie et 31

Contents iii

TNPUL TYPE ettt ettt st e 31

Input Range31

Input Offset............... .31

Input Offset Range.... .31

OULPUL EXCIEALION. ...ttt ettt ettt st st seee e 32

Section II. Application Software 33

3. D SCVIEW ettt ettt b ettt e et b et e et s bbbt ne s enis 35

Save and Load Workspaces36

STAT E STOP .ottt sttt sttt sttt ae s 36

SYSLEM OPLIONS ...ttt ettt ettt ettt be e e ese b etesbesaenenens 37
Configuration Window ...
GIraph WINAOWcouiiuiiiiiiiieee et
Table WINAOW.....c.cveiiieiiieiiieicinicrtcerette ettt ettt

Disk Log Window..............

Server Disk Log Window...

4. Using the iDSC Board with DASYLab..................
Installing iDSC Board Support for DASYLa@b.....c..cceeeeeiiiiiinieeeeeeeeeee
Using an iDSC Board Module with DASY Lab
Running the DASY Lab iDSC Board Examples
Using More Than One iDSC Board with DASYLabccoocovireieneiiiiiiiieee 52
Synchronizing Several iDSC Boardsccoooviiierieiiieiiieesee e 53
Special Addressing..........cccceveeererenncnne. .53

5. Using the iDSC Board with LabVIEW55
INStAllationceovevevereinieirieenicereece e ...55

Creating an iDSC Board Application in LabVIEWc.coocoiiiiiiniicccee, 56
Running the LabVIEW iDSC Board Examplescccovoeveneneneneeeeicceeen 56
App01 - BASIC
APDPO2 - GRAPH ..ottt 57
APDPO3 = LOG ittt st 57
App04 - LOGVW57
AppO05 - DaplFFT57
App06 - DaplCC.....ceoeeeieee .57
App07 - Disk Logging (1 iDSC).....ceeeuiriiiiiieeieeieee e 58
App08 - Disk Logging (2 iDSC with synchronization)cccceceecerereneneenne. 58
App09 — A Group of iDSC
DLL REfETENCE.euviereiirieiiieieietceeiet ettt ettt
DSCIO DLL Function Referencecoccevveireiiincninicineinieieceineeesreeneenens
MSLAPP DLL Function Reference
Data Format...........ccccoocviiiiiiiininnnn,
MslDscServerDiskLogConfigSet.....
SUDVIS REfETENCE ...ttt
IDSC TNttt ettt sttt
iDSC Read
IDSC CLOSE ...ttt ettt sttt neenea

iDSC MaSl .
DiskLog......

Contents

INUM DAL ..ottt et ebe e e et e e et e e e esbeeeensbaeennsaeas 72

Get BITOT ..o 12
6. Using the iDSC Board with LabWindows/CVI................ .74
Running the LabWindows/CVI iDSC Board Example 74
Creating an iDSC Board Application in LabWindows/CVI..........ccccoceviniiiniinnnne. 75
7. Using the iDSC Board with HP VEEc..cccoiiiiiiiiiiininiiccncecscncceeeeene 77
Installing iDSC Board Support for HP VEE........ LT
Running the HP VEE iDSC Board Examplesc.cccccovevirinicnicncnennens .. 78
APPOLVEE ...ttt .. 78
APPO02.VEE 78
APPO3.VEE 78
APPO4.VEE ..ot .. 78
Creating an iDSC Board Application in HP VEE ..., 79
ODbJECt RETETENCEuvieieiiieiieiiciete ettt e 80
iDSC Init........ .80
iDSC Data...... ... 80
IDSC ClOSecevvvirciiiiiiicee ... 80
8. Using the iDSC Board with MATLAB................... ... 81
Installing iDSC Board Support for MATLAB 81
Using an iDSC Board with MATLAB 82
Running the MATLAB iDSC Board Examples.........c.cccccceevervinininininencicieenene. 86
DLL MEX REferencec.ccovveuiiiiiiiiiiiciiciiccccece s 88
Section III. Programming Interfaces 101
9. DSCIO DLL Programmer’s INterface..........ccccevueveeieirinenieieiececeiese e 103
DSCIO Interface EXamMPILESc.ccveeruiriinieieiieieiieieceesie et 104
Visual Basic EXamPIes.........cocooiiirieriiiiieiiieeeeeeeeee e 104
Dvm.vbp
BINLOZ VDD 1.ttt 104
L0adSaVE. VDD .. 104
C/C++ Console Examples...... ... 104

BinLog.cpp «eeeveeverveniiieienee ... 104
TxtLog.cpp.....
L0AASAVE.CPP ettt ettt ettt 105
Creating a DSCIO Interface Application...........ccoeeeeirereieininieieesceeecseeeeee 106
Universal Naming Convention
Master/Slave ConfigUrationccccooererieieieinieesee ettt
DAPL SUPPOTL...ciiiiiiiiiieierieeeee ettt sttt sbeene
Writing DAPL........ocoveeenne.
Using the DAPL Interface
Structure Summary.........c.cceeenee.
TBUTEIGEEX.eveviieiiicieirtcercreeecte ettt
TDSCIOINTOA ... s
TFilterParam v
TProcSystemErrorStdcall...........ooiiiiiiieieeieieeeee e
TServerDiskLogCoN ig.co.evuiiiiiiiieieieeeee s
TXbPinConfig.................
Function Summary

Contents v

vi

DscAddressGet

DscAddressSet......

DscBufferAvail

DscBufferGet............cc........

DscBufferGetEnabledGetc.oeveruieieiieiiniieiesieeieeee et 135
DscBufferGetEnabledSet.ooviiiriieieniieieiieieseeet et 136
DSCBUTEIGELEX.ccuiiiiieiieiieie sttt sttt sttt eee 137
DSCCAIIDIALE ...ttt sttt sttt b e ste et sae e e 139
DscCommandSLoad.........cocuieieriirieniieieiieiesicee et 140
DscConfigDialogOptioNSGEeL.........cevvieuieriieieniieiesieeieeieie sttt seeeee s eeeseeens 141
DscConfigDialogOPtiONSSEtcc.eevieuieriieiieniieie sttt 142
DscConfigDialogSROWc..oouiiiiiiieiieieieee ettt 144
DSCCONTIGREAM.cceiiiieiieiieieeeeee et 147
DSCCONTIGWIILEeiieiieiieiieierieee ettt sttt sttt st enne e 149
DSCCONTIGWIIEESIZE ..c.eveeiieiieeieeeee ettt sttt sttt 151

DSCDAPITEXEGELcuvevieniieiieie ettt ettt ettt e sttt esae st enbesnease e 152
DscDaplTextLengthGetcc.evieiirieieriieieeiieie sttt 153

DSCDAPITEXESEL.....eeuvevieniieiieie ettt sttt ettt ste e e nbesaeete e 154
DSCFIEIINAEX ...t 155
DSCFIterParameterSGeL..........eeevvieieieeeeieeeeeiee e e 156
DSCFilterParametersSet..........oouviiiiieiiieciieeie ettt 157
DSCGIOUPDEIAY ...ttt sttt sttt st e b st ene e 159
DSCHANAIECIOSE ...ttt et et e re e enree s 160

DscHandleOpen.........cccoevevveeeenieeeenieenenns e 161
DscHardwareStopcceoveeveeceeneevenieienne e 162

DISCIAGEL......eeieirieiieeiee ettt ettt et ebe e e be e saseereeenaeenaee s 163
DISCIASEL ...ttt ettt et b e e teeereesaaeeneeenneeas 164
DScINPULRANGEGEL.coeiieiiieiiiiiieeieeteee et 165
DSCINPUIRANZESEL ..o 166
DSCLAStEITOITEXEGELvvveieeeeiciiieeee et e e e e e e eeaannes 167
DSCLAStEITOITEXESELvvvveeeeieeiiieeee e e ee e e e e eaaanes 168

DSCMASLEIGELeeeueviiieiiiieeeiie ettt ettt e e eeabe e e te e e e sebeeeebbeeensaeeensseees 169
DSCMASLEISEL....eiieiiiiiieiiie ettt et e et e e e e e e e ebeeeentbeeeesbaeeennaeeennnaeas 170
DSCMEMOTYUSEA ..ottt sttt sttt st ebe st eae e 171

DSscONSYStEMEITOISELcouiiiiiiiiiiiieee et 172
DSCOPETAtEMOAEGELc..eeuvinieiieiieiieie ettt ettt sttt s sbesaeeee e 173
DSCOPEIateMOdESELcuevieieiieiiniieieiereectet ettt 174
DscPInEnabledCount...........cccooiiiririniiiiieieiicenieseseseeeetee et 175
DSCPINENAbIEAGEL........eeuieiieiieiieiieiee sttt 176
DSCPINENAbIEdSetcveeiieiieiieiieieeeeeee e 177
DSCPINTOFIIErMAaPGEL......c.eoveuieiieiiriinieniiicieecteiteie ettt 179

DSCPINTOFIErMAaPSELeovienieieieiieiieieeitete ettt sttt 180
DSCREMOtEMASLEIGELccueieniieriiieiieiie ettt 181
DSCREMOtEMASLEISEL.......eeiiiiiieiiiieiieeieete e 182
DSCRUNNMING ...ttt ettt ettt e bt et e sae e e sbeebesaeense e 183
DSCSaMPIERALEGELc.vevieneieiieriieieieeie ettt sttt s e et enne e 184
DScSamMPIERALESEL.c.veeueetieiieiiieieeete ettt sttt ee 185

Contents

Contents

DScScansDiSCarded..........oouviiiviiiiiiiie e

DscServerDiskLogBytes............
DscServerDiskLogConfigGet ...
DscServerDiskLogConfigSet........
DscServerDiskLogEnabledGetccvevuerieriinienienieieeteieeese e
DscServerDiskLogEnabledSetcovvieriieiinieieiieiesieeietee e
DscServerDiskLogFileNameGet 195
DscServerDiskLogFileNameSet.........ccvevvirieriirieniieieieeiesieeiesie e 196
DSCSIAVECOUNL. ..ottt sttt sttt st esbeeasesbeenaens 197
DscSlaveHandle......... ... 198
DscStartAcquiring..... ... 199
DscStopAcquiring..... ... 200
DSCSIIUCTPTEPATE ...ttt ettt 201
DSCSySteMETTOIPIOCESS ..c.vviiiiiiiiieiieiieceee e 202
DscTcEnabledCount............203
DSCTCENADIEAGEL ..ottt 204
DSCTCENADICASEL ..ottt 205
DscTcMaximum.... ... 207
DscTcWidth.....ccccveveennne. ... 208
DscTransferFunctionGet...... ... 209
DSCUNIESEPGEL ..ottt ettt ettt et sttt st beseeeneens
DscUnitStepLengthGet
DscXbCalibrate...............
DscXbEnabledGet............cccene...
DscXbEnabledSet..........cccoeenenee.
DscXbPinConfigGet
DscXbPinConfigSet.....
DscGroupAddOne..................... -
DscGroupConfigDialogShowc.ccoccvirinininiiiiiiiiiiieeeeeseeeeeee 219
DscGroupConfigReadcoovirieriieieiieieriieie et 221
DscGroupConfigWrite............ ...223
DscGroupConfigWIIteSiZeceuvevieieriieierieieeierieeiee et ... 225
DSCGIoUPCOUNLcouiiiiiiiiiieiteeiee ettt .. 226
DscGroupDeleteOne..... ... 227
DscGroupDse........coueeeee .. 228
DscGroupHandleClose.... ... 229
DscGroupHandleOPen........cccuevieriieieiieiierieeeseetestee ettt 230
ODbSOLEte INEEITACE ..ottt ettt seeens 231
DAPL Custom Command Support...........ccceeueennene 232
Using the DAPL custom command interface...........cocevevevenieiieneesieneeniencennn. 232
DscDaplCCDOWNIOAAGELcueruieieriieieriieie ettt 233
DscDaplCCDownloadSet....... ...234
DscDaplCCListGet 235
DscDaplCCListLengthGet 236
DSCDAPICCLISESEL ...ttt sttt 237
DScDaplCCStaCKSIZEGETeouveeieiieiieiieieeeie ettt 238
DscDaplCCStaCKSIZESEL......couveiieieiieierteeieieee et 239

vii

viii

10. DSC Component Programmer’s INterface..........coceevuereenienienenienienieie e 241

DSCC Interface EXamPIEScccveruerieieriiiieierieeieie ettt 242

BINLOG.APT ettt sttt 242
DVINLAPT .ttt sttt et sttt e be st et et ete e 242
GIAPN.APT ..ttt ettt sttt st et sae et e 242
Installing the Component LiDrarycceceeierierienienienienieeeeesieeieie et 243
Delphi 5, Delphi 6, DEIphi 7cceeieeiieiiiieiieieiectet ettt 243

CH++Builder 5, CHBUILAET 6.......oooenviiieiieeeieeeeee e 245
Creating a DSCC Interface Application..........cccoecvevuerierienienieienieneeienieeeeie e 246
Universal Naming CONVENtION.c.cccuviviririinieieteieienienieee ettt eieere e 247

Master/Slave CONfIGUIALIONccuieieriieieiieieie ettt ettt ae s eee 248
DAPL SUPPOTT ..ttt et sttt ettt et e st enenes 250
WItING DAPL ..ottt 250
Using the DAPL INterfacecccvevuivierieriieieeieiecieie et 250
Object and Type Summary........

TDsc object......coerveniieinirinieneee
TDscGroup object.......ccevvereevueeruereennne.
TExternalBoard object....
TFilterDesign object.......
TServerDiskLog object...
TBUTEIGELEX tYPC... . evienietieieiieeieeeete sttt sttt sttt st eee
TDSCIOINO4 LYPE...cvveuviiieiieiieiticieteecte e
TFilterParam type..................
TServerDiskLogConfig tyPe.......cccviriririinienieiiietierieseseeeeeet e
TXDPINCONTIZ EYPE...cnvenrinrinieiiiiieiiitirieee ettt 270
Property, Method, and Event Summaryccccccociviniininininieiinnncncncnccne 272
AddONe Method.........ccooiriiriiriiiiieieiere et 276
AQAIESS PIOPEILY....nviiiiriieterienteteteit ettt sttt ettt ettt b ettt eae b e aen 277
AENUATION PIOPETLYeuivirtirtitirenieiteiteieee sttt ettt et eee st s et eeseneeaesaenees 278
BIOCKSIZE PIOPEILY ..evevitiieieiieiieiteiteicnteeteste ettt ettt 280
BufferAvail Methodc.ooieiiiiiiiieeeeeee e 281
BufferGet methodc..coooieiiiiiiiiiinc e 282
BufferGetEnabled property........cooveeierierieienieieseeieeceie et 284
BufferGetEx method..........cocoviiiiiinininiiiiec e 285
Calibrate Method..........coeoverieiiiiiiiniie e 287
CommandsLoad methodc.coccvirininiiniiiiiiiceceece e 288
ConfigDialogOptions PrOPETLYcccecveererirenierierteieeeeeeeenrestenreseeseneeeenens 289
ConfigDialogShow method ... 291
ConfigDialogShow methodc.ccoevieiiiiiiiiiiiiiccccccceee e 294
COUNE PIOPEILY ...eutieririeiieeieesiteette et ettt et e st e bt e eteesateebeesabeesteesbeesaeeeseesaneens 296
CutoffFreqHIgh ProPertyccvevvieieiieieeieeiesteee ettt 297
CUtOfTFTEqLOW PIOPEITYc.eeviiiiriiriiriiriertetetee ettt 298
CutoffSIopeHIgh PrOPEeItyc.cocevueririiririiieieicecr e 299
CUtoffSIOPELOW PrOPEITYccuviviruiriiriinietiieiet ettt 301
DapITEeXt PIOPEILY.....evetenrenieiieiieierientente ettt ettt sttt ettt eae e sbe e 303
DeleteOne methodco.eoveiiiiinininnieieeeceesc et 304
DISC PIOPEILY .ottt ettt sttt et 305

Contents

Contents

ExternalBoard Property........ccceceeiereriienienieienienieeiesie ettt 306
FileFlagsAttributes property307
FileName property309
FileShareMode property310
FilterDeSign PrOPEILYccveeveeieriieienieeitenteetesteetesteete bt eee et ebeseeensesseebeseeeneens 311
FilterIndex method..........cccooiviiiniininiiiiinieecee e 312
FilterName property.................. 313
FilterParametersGet method...... ettt et 314
FilterParametersSet method ettt et 315
FilterType property 317
Flags property319
GroupDelay property 321
HardwareStop method..........cceviiiiiieniirieiieeeceee e 322
INPULOTTSEt PIOPEILY..c..eeuvieieiieiieiieieie ettt ettt ettt ettt reseeens 323
InputOffsetRange property.. ..324
InputRange propertycccoeeeveerieiieniiiiinieiecicieeice e .. 326
InputRange propertycccoeeevverieiieniiiiinieieniciteee e .. 327
InputType property329
Master property............ .. 330
MaxCount property......... ... 331
MEMOTYUSEA PrOPEILYveevvevieniitieienieeteettete st etesteetesteentesieeteseeesesaeenseseeens 332
OnAfterNumDSCChange €VENL...........coeeruerieriirieniieieieeeesieeie e seeie e 333
OnBeforeNumDscChange event334
OnCalibrateProgress EVeNt..........ceververeeereeeienieseereeeeenieneeens ..335
OnHardwareDelayChange event...........cceevecvereenieneeniennenns ..336
OnlInputRangeUpdate event.......... .. 337
OnPinEnabledUpdate event... .. 338
OnSystemError event.............339
OPENF1aZS PIOPEITY...ccuvivieiiieiieieeieie ettt ettt ettt ettt ettt ettt ente s ebesreeneeas 340
OPErateMOde PrOPETLYecuverveeieiieieeeieteeteeiesteteetesteeete bt etesteeneesseeseseeensens 342
OutputExcitation property 344
PinEnabled propertyooceveeeerieeienieeieneeienieeeese et ..345
PinEnabledCount property.........ccceeeereereenieeeenienienieeeenieeiesieennens .. 346
PinToFilterMap property 347
RemoteMaster property... .. 348
Running property............ ... 349
SaMPIERALE PIOPEITYeveeurieeieiieiieiietieie ettt ettt et et eeee bt et e seeeneesaeeneenee 350
ScansDiscarded PrOPETLY.........ccuereerierrieiieriieieetietesteteetteteete st ere e eee e ene e 352
ServerDiskLog property............ ... 353
ServerDiskLogBytes ProPertycceeiecvererierieiierieeiesttete sttt 354
ServerDiskLogConfigGet method............ocevieiiiiieniiiiieieeeece e 355
ServerDiskLogConfigSet method356
ServerDiskLogEnabled property... .. 358
Sharpness property.........cccceeevenene ... 359
S1aVECOUNE PIOPETLY ...eevveeieniieiieieeiteteeitertestte it etesteete bt entesteentenseenaeseeeneesaeenns 361
SlaveName methodcceiririiiniiniircee e 362
Start Acquiring MEthod.........ccueeieriiriiriieierieeeee e 363

ix

Section IV. Installation and Setup
11.

12.

13.

14.

StopAcquiring Method.........ccceciviiiririniie e

StructPrepare method

SystemErrorProcess method

TcEnabled property

TCcEnabledCount Property.........cceeceerueeierieeienieeiesieetesieeieseeesseeee e eeesseenseseeens

TCMAXIMUM PIOPEILY .vevvenrienrerreenteetietesteeteeseeseseeesesseessesseesseensessesseessessessenns

TcWidth property

TransferFunctionGet method..........cc.oeveviiiiiniieiiinieee e 372

UnitStepGet MEthodccoevviiiiiieiecieeee e 373

UnitStepLengthGet methodc..ccoeciiiiiiinininiiiinneeee e 374

XbCalibrate Method.........c.cccviriirieniiiiiiinncec e 375

XbENabled PrOPerty........ccceeririerieieieirienienienteneeteeteieee st 376

XbPinConfigGet Methodcoveveiiiiirininiccececrereeeee e 377

XbPinConfigSet method.......c..covevieiiiiininiiiceeeee e 378
ODbS0lete INTETTACEc..cuviiiiriirieriitccec ettt e 380

DAPL Custom Command Support......... e e 381
Using the DAPL custom command interface.............c..c....... et
TDaplCCList ObjeCt.....co.evverveurereenirienieninnee
DaplCCList property
Download property.........
StaCKSIZE PrOPEILY ...eouvieeieriieiieiieie ettt sttt sttt e s

iDSC Board Hardware Architecture
Hardware OVerviewc.cocceeveeennene.
iDSC Board Block Diagram...........c.coueeeoieuiriiiniesieieieieiceeeeie e
Warm-up and Self-Calibration............cceoreririnenierieeeceeee e
Isolation
Simultaneous Sampling and Synchronization.............cccceceeirererineneneseeeeeene 393
INSTALTALION. c.. vttt sttt st
iDSC Board Handling Precautions
Installing the iDSC 1816.....................
System Hardware Requirements
INStAllation StEPSc.eouiruirierieieeiiet ettt
Installing the IDSC 816........coiiiiiieieieeee et
System Hardware Requirements
Standard ConfigUrationsccoeeerererirereneieeeee e
INStAllation StEPSc.eouiriirierieieeieet ettt
Several iDSC Boardscccoeueevenenne
Installing the iDSC Board Software....
Testing the Installation........................
Troubleshooting the IDSC 1816cc.ouiieieieieieeee e
Advanced Installation OPtioNScceeiriririirinieieieeeec et
Nonstandard Configurations
Multiple Board Installationcccoeieiriiirinenieee e
Physical INErfACEcoveieieiieiiiieee e
Input/Output Connector
Analog Inputs........cccccceeneee

Contents

Index

iDSC Board Synchronization CONNECHOT............ceceviruerrenieieieeninenenenreneeseeeeneene
iDSC 1816 External Synchronization COnnector.............cecceevereriererenuenenieneenne

Contents

Xi

Section |. Introduction

Section . Introduction

1. Introduction

The iDSC board from Microstar Laboratories is a complete data acquisition system
that occupies one expansion slot in a PC. The board is suitable for a wide range of
applications in laboratory and industrial data acquisition and control, especially those
involving spectral analysis.

Control of the iDSC board is handled through a turnkey program called DSCview;
through standard applications including DASYLab, LabVIEW, LabWindows/CVI,
HP VEE, and MATLAB; through a programmer’s graphical user interface; or through
a programmer’s function interface.

Introduction 3

About This Document
This document is divided into the following four sections:

1. Introduction

2. Application Software

3. Programming Interfaces
4. Installation and Setup

Each section is then subdivided into chapters that relate to specific topics within the
section. The Introduction contains introductory material about spectral analysis and
the iDSC board, including filter design. The Application Software section describes
DSCview, and the DASYLab, LabVIEW, LabWindows/CVI, HP VEE, and
MATLAB support for the iDSC board. The Programming Interfaces section describes
the graphical user interface and the function interface. Finally, Installation and Setup
contains hardware and software installation instructions and detailed information
about the hardware architecture of the iDSC 1816 and the iDSC 816.

4 Introduction

iDSC Fundamentals

A typical data acquisition system samples input voltages at a fixed rate, the sampling
frequency, to produce a stream of numbers. The Nyquist frequency is defined as one-
half of the sampling frequency and a signal whose frequency components fall only
below the Nyquist can be accurately reconstructed from its components. A signal with
frequency components falling both above and below the Nyquist cannot be accurately
reconstructed because it is impossible to distinguish between the various frequency
components.

Spectral analysis for data acquisition studies observations in the frequency domain
rather than in the time domain. This type of analysis places special requirements on a
data acquisition system. The system must be accurate enough to distinguish small
components at some frequencies from much larger components at other frequencies.
The system must also provide alias-free data. If alias-free data cannot be guaranteed,
any analysis applied to the data will yield questionable results.

The two figures below illustrate aliasing. The first figure displays one cycle of a 600
Hz sine wave sampled at a rate of 3600 samples/second. Six evenly spaced sampling
points are plotted.

Introduction 5

600 Hz. Sinewave With 6 Sampling Points

e T T T =T T = T B
e = & © 2 9 8 2

apnydwy

Introduction

Samples

The second figure displays the original sine wave at 600 Hz and a second sine wave at
4200 Hz that passes through the same sampling points. Aliasing makes it impossible
to distinguish the 600 Hz signal from the 4200 Hz signal.

4200 Hz. Sinewave Showing Aliasing

0.8 1
0.6 1
0.4 +

0.2 -

BO0 Hz.
4200 Hz.

Amplitude
[}

02 -
04 -
06 A

08 4

1
I
1
1
1
1
1
1
1
|
3 4 5 B

Samples

Aliasing is a sampling artifact, and digital signal processing (DSP) cannot remove
aliases after a signal has been sampled. The solution to removing aliases from a data
acquisition system is to apply analog filters to the system before sampling. Combining
analog filters with digital oversampling, filtering, and decimation produces alias-free,
high quality data suitable for spectral analysis.

Filter Characteristics

The frequency response of a filter is characterized by its graphs of amplitude response
and phase response in terms of frequency. A filter’s amplitude response can be plotted
either on a logarithmic scale or a linear scale. The frequency axis of this graph is
usually plotted on a linear scale, but can also can be plotted on a logarithmic scale. A
filter’s phase response is plotted either in degrees or in radians.

Introduction 7

The figure below displays an ideal ‘brick wall’ filter. The ideal filter has no
attenuation up to its cutoff frequency, and then has infinite attenuation. The ideal filter
is not realizable but may be approximated by realizable filters.

"Brick Wall" Filter Response

Attenuation{dB’
n
o
1

-120 t t t t
1] 2400 4500 7200 9500 12000

FrequencyfHz)

The figure below displays typical characteristics of analog filters. Typical rolloff rates
range from 24 dB/octave to 72 dB/octave. Even at 72 dB/octave, it takes more than 2
octaves - a factor of four in frequency - to roll off by 96 dB.

Typical Filter Response
10

10 4
20 4
a0
40 24 B foctane iter
Sl —. 7 cBinctare dlter
60 4

70 4
&0
a0 A
400
410 4
420 . . ' .

0 2400 4800 7200 9600 12000
FrequencHz)

Attenuation{dB)

8 Introduction

In addition to its attenuation, a filter is characterized by its phase response. The figure
below displays a typical phase response curve for an analog filter.

Typical Phase Response of Analog Filters

180
1680 £
140 £
120+
1m £
80 £
60 £
40 £
a0 £

Phase{degrees

i 2400 400 700 9800 12000
FrequencyfHz)

The ideal phase response increases linearly with frequency. The delay through the
filter is independent of frequency and therefore signals pass through the filter without
distortion.

Analog filters are complex circuits, requiring precision resistors and capacitors. It is
difficult and costly to make an analog filter with a variable cutoff frequency,
especially if the cutoff frequency must cover a wide range. Also, analog filters cannot
be perfectly linear, and for analog filters there is a trade-off between approximating
the ideal amplitude response and approximating the ideal phase response.

Introduction 9

2. DSC Graphical Design

The DSC Graphical Design simplifies the iDSC board input configuration and filter
design process through graphical user interfaces. The Individual Interface allows
configuration of a single iDSC board, and the Group Interface allows configuration of
multiple iDSC boards. The Group Interface encapsulates the Individual Interface and
therefore can also be used to configure a single iDSC board.

The Individual Interface and Group Interface consists of two main screens, the
Input Screen and the Filter Design Screen. There is also an External Board Screen that
is only accessible if XbEnab1ed is set to true. There is a tab for the input screen, filter
design screen, and external board screen if XbEnabT1ed is true. Within the filter design
screen, there are eight tabs for the filter designs.

The Input Parameters, Filter Design Parameters, and External Board Parameters
topics describe all the parameters in detail.

DSC Graphical Design 11

Individual Interface

Input Screen
The Input Screen is activated by selecting the Input tab.
The following figure displays the Input Screen.

i Configuration

I T I T
BRI TR I
cee oz s
IR R T
I S I TR
B T L
B T I
I = T

¥
v
¥
¥
¥
~
¥
¥

The following parameters are configured from the Input Screen.
* Sample Rate
* Input Range
* Filter Name
* Enabled

The following read only properties are displayed in the Input Screen.
* Channel Count

12 DSC Graphical Design

* Group Delay
* Input Pin
* Cutoff Frequency

DSC Graphical Design

13

Filter Design Screen

The Filter Design Screen is activated by selecting the Filter Design tab. Eight distinct
filter designs, activated by a second set of tabs, exist.

The following figure displays the Filter Design Screen.

i Configuration

The following parameters are configured for each filter design from the Filter Design
Screen.

* Filter Name

* Filter Type

* Sharpness

* Low Cutoff Frequency

* Low Cutoff Slope

* High Cutoff Frequency

* High Cutoff Slope

* Attenuation

14 DSC Graphical Design

The Filter Design Screen displays a filter’s amplitude response in one of the following

forms.
* Linear Display
* Linear Zoom Display
* Log Display
* Log Zoom Display
* Unit Step Display

The default amplitude response is Log Display. To change the amplitude response,
click the right mouse button over the Filter Design Screen and select the Y Display

menu item.

DSC Graphical Design

15

External Board Screen

The External Board Screen is activated by enabling XbEnab1ed and then selecting the
External Board tab.

The following figure displays the External Board Screen.

i Configuration

[riov ol P
[riov ol
[riov ol
[riov ol b
CETIE I
[Pyl
[riov 1 P
[yl b

B I P

a0
A
e
=
e
45
s
A
S

The following parameters are configured from the External Board Screen.
* Input Type
* Input Range
* Input Offset
* Qutput Excitation

The following read only properties are displayed in the External Board Screen.

* Input Pin
* Input Offset Range

16 DSC Graphical Design

Group Interface

The Group Interface encapsulates the Individual Interface and therefore it supports the
Input Screen, Filter Design Screen and External Board Screen.

The following figure displays the Group Interface.

i Configuration: DSC2

(S A B B VB B |

fa e
B
B
BT R
I T
fa s
BT
B

The following parameters are configured from the Group Interface.

DSCs
The DSCs parameter configures the number of iDSC boards in the system. The up
arrow adds iDSCs and the down arrow deletes iDSCs.

Address
The Address parameter is enabled when the iDSC address is selected from the tree
of iDSC boards. The address can be changed in the tree or through the edit box.

DSC Graphical Design 17

Mode
The Mode parameter is enabled when the mode is selected from the tree of iDSC
boards. The mode can be changed in the tree or through the drop down list. If the
mode is changed in the tree, it must be either Independent or STave of Xxx,
where Xxx is the name of the iDSC board. It cannot be set to Master since that is
automatically set when the slaves are selected.

These additional parameters are configured by clicking the right mouse button.

External Board Calibrate
The External Board Calibrate menu item calibrates the external board if the
external board is enabled. The external board calibration is not automatic, and has to
be invoked explicitly. It is a slow process and should be performed only if
necessary.

External Board Enable
The External Board Enable menu item enables the external board. Before any
communcation with the external board is performed, for example external board
calibration, the external board must first be enabled.

Raw Data
The Raw Data menu item selects raw data rather than filtered data from the iDSC.
When Raw Data is enabled, all filters configured from the Filter Design Screen are
ignored.

Remote Master
The Remote Master menu item configures a Master iDSC board as a remote
master.

Server Disk Log
The Server Disk Log menu item configures the server disk log parameters which
includes the filename, flags, file share mode, open flags, and file flags attributes.
The filename must be valid and enabled must be checked for server disk logging to
begin.

18 DSC Graphical Design

The following figure displays the Server Disk Log dialog.

Server Disk Log

Copy
The Copy menu item will copy the entire iDSC configuration from the iDSC to the

clipboard.

Paste
The Paste menu item will paste the copied iDSC configuration from the clipboard
to another iDSC.

DSC Graphical Design 19

Input Parameters

The following Input Parameters are accessible from the Input Screen.

Sample Rate
The Sample Rate parameter sets the sample rate on each channel, in units of
samples per second (s/s). The table below displays the valid sample rates arranged in
octaves.

153600

102400 76800
51200 38400
25600 19200 15360
12800 10240 9600 7680
6400 5120 4800 3840
3200 3072 2560 2400 2048 1920
1600 1536 1280 1200 1024 960
800 768 640 600 512 480
400 384 320 300 256 240
200 192 160 150 128 120
100 96 80 75 64 60
50 48 40 32 30
25 24 20 16 15

12 10 8

Group Delay
The Group Delay parameter is the amount of time it takes for a reading to pass
through the digital filters. All signal frequency components that are present in the
passband of the filter are delayed by group delay. The group delay property is read-
only and is expressed in units of seconds.

The group delay is calculated using the selected Sample Rate and filter designs.
The group delay does not include the filter designs of disabled input pins.

Input Range
The Input Range parameter configures the input range to either +/- 5 V or +/- 10
V.

20 DSC Graphical Design

Filter Name
The Filter Name parameter maps an input pin to a named filter design. The same
filter design may be applied to several input pins. An input pin is mapped to a filter
design regardless of whether the input pin is disabled.

The filter name can be changed in the Filter Design Screen. When the filter name is
changed, the filter name drop down list is updated to reflect the new filter name.

The default filter names are FDO, FD1, FD2, FD3, FD4, FD5, FD6, and FD7.

Enabled
The Enabled parameter check box enables or disables each input pin. At run-time,
the iDSC board returns data to the PC only from enabled input pins.

DSC Graphical Design 21

Filter Design Parameters
The following Filter Design Parameters are accessible from the Filter Design Screen.

Each Filter Design Parameter is configured by either entering a number or moving a
slider. If the you choose to enter a number, you must press ‘Enter,” or exit the edit box
when finished configuring the parameter.

Filter Name
The Filter Name parameter assigns a unique filter name to each filter design. If an
already existing filter name is assigned, the existing filter name will not change. A
filter name is limited to 63 characters.

The filter name parameter is displayed on the tab at the top of the
Filter Design Screen. Changing the filter name parameter automatically updates this
tab, and also updates the filter name in the Input Screen.

Filter Type
The FiTlter Type parameter assigns a filter type to each filter design. The filter
type is either lowpass or bandpass.

Sharpness
The Sharpness parameter of a filter determines the sharpness of the corner
frequency response. The sharpness of an ideal filter is the number of taps in the final
filter stage.

Valid sharpness values are odd numbers in the range 37 to 255, depending on the
sample rate.

Low Cutoff Frequency
The Low Cutoff Frequency parameter determines the ideal cutoff frequency that
a filter is designed to approximate. The low cutoff frequency of an ideal filter is the
filter’s first transition band. The low cutoff frequency for a filter is specified in
Hertz (Hz).

Valid low cutoff frequency values are in the range 2% to 80% of the Nyquist
frequency. The Nyquist frequency is half the Sample Rate.

22 DSC Graphical Design

For a lowpass filter the first transition band is the transition from passband to
stopband. For a bandpass filter the first transition band is the transition from
stopband to passband.

Low Cutoff Slope
The Low Cutoff Slope parameter determines the ideal cutoff response that a
filter is designed to approximate. The low cutoff slope of an ideal filter is the width
of the filter’s first transition band. The low cutoff slope of a filter is defined as a
percentage of the Nyquist frequency.

Valid low cutoff slope values are in the range 0% to 80% of the Nyquist frequency.
The Nyquist frequency is half the Sample Rate.

High Cutoff Frequency
The High Cutoff Frequency parameter determines the ideal cutoff frequency
that a filter is designed to approximate. The high cutoff frequency of an ideal filter is
the filter’s second transition band. The high cutoff frequency for a filter is specified
in Hertz (Hz).

Valid high cutoff frequency values are in the range 2% to 80% of the Nyquist
frequency. The Nyquist frequency is half the Sample Rate.

For a bandpass filter the second transition band is the transition from passband to
stopband.

High Cutoff Slope
The High Cutoff Slope parameter determines the ideal cutoff response that a
filter is designed to approximate. The high cutoff slope of an ideal filter is the width
of the filter’s second transition band. The high cutoff slope of a filter is defined as a
percentage of the Nyquist frequency.

Valid high cutoff slope values are in the range 0% to 80% of the Nyquist frequency.
The Nyquist frequency is half the Sample Rate.

Attenuation
The Attenuation parameter determines the response in the stopband of a filter.

Valid attenuation values are in the range 6.0 to 12.0.

DSC Graphical Design 23

Filter Response

The Filter Design Screen displays a filter’s amplitude response based on selected filter
parameters.

The Filter Response may be displayed graphically by one of the following methods.
* Linear Display
* Linear Zoom Display
* Log Display
* Log Zoom Display
* Unit Step Display

The default amplitude response is a Log Display. To change the amplitude
response, click the right mouse button over the Filter Design Screen and select the Y
Display menu item. The Y Display menu item allows the user to change the
amplitude response display units to either linear, linear zoom, log, log zoom or unit
step.

The linear, linear zoom, log, and log zoom graphs display the amplitude response at
frequencies from zero to the Nyquist frequency. At all frequencies above the Nyquist
frequency, the iDSC board has attenuation of more than 96 dB. A unit step display
shows the amplitude response of the filter in relation to a change in the input from
zero to positive full scale.

There are several more options when you click the right mouse button over the
Filter Design Screen. These options include:

* Crosshair Track

* Defaults Load

* Copy

* Paste

Holding the left mouse button down and dragging the mouse over the graph will
display a crosshair with the x and y coordinates of a particular point. If the
Crosshair Track menu item is checked, the crosshair will track the filter response
curve. This feature is useful in determining the exact cutoff frequency, cutoff slope, or
attenuation at a particular point.

Selecting the Defaults Load menu item will load the default filter response graphs
for a particular sample rate. The default filter response graphs always have very flat
passband characteristics and stop band attenuation of more than 96 dB.

24 DSC Graphical Design

The Copy menu item will copy the filter design parameters from the filter design to
the clipboard. The Paste menu item will paste the copied filter design parameters
from the clipboard to another filter design.

DSC Graphical Design 25

Linear Display
A Linear Display shows the linear amplitude response in the frequency domain.
A linear display graph plots the linear attenuation from 0 to 110%, with frequencies
from zero to the Nyquist frequency. The Nyquist frequency is half the sample rate.

The filters used in the iDSC board have linear phase, so the phase response is
specified by the Group Delay.

The following figure shows a linear display of the filter’s amplitude response.

i Configuration

26 DSC Graphical Design

Linear Zoom Display
A Linear Zoom Display shows the linear amplitude response in the frequency
domain, with focus on the passband performance of the filter. A linear zoom display
graph plots the linear attenuation, in 16-bit counts, from -16 counts to +16 counts,
with frequencies from zero to the Nyquist frequency. The Nyquist frequency is half
the Sample Rate.

The following figure shows a linear zoom display of the filter’s amplitude response.

i Configuration

DSC Graphical Design 27

Log Display
A Log Display shows the logarithmic amplitude response in the frequency
domain. A logarithmic display graph plots the logarithmic attenuation, in decibels,
from -120 dB to 10 dB, with frequencies from zero to the Nyquist frequency. The
Nyquist frequency is half the Sample Rate.

The following figure shows a logarithmic display of the filter’s amplitude response.

i Configuration

28 DSC Graphical Design

Log Zoom Display
A Log Zoom Display shows the logarithmic amplitude response in the frequency
domain, with focus on the passband performance of the filter. A logarithmic zoom
display graph plots the logarithmic attenuation, in decibels, from -4 dB to +1 dB,
with frequencies from zero to the Nyquist frequency. The Nyquist frequency is half
the Sample Rate.

The following figure shows a logarithmic zoom display of the filter’s amplitude
response.

i Configuration

DSC Graphical Design 29

Unit Step Display
A Unit Step Display shows the amplitude response of the filter in relation to a
change in the input from zero to positive full scale. Note that the response to a unit
step change in the input is spread out over many samples. This is a necessary
consequence of the very sharp cutoff in the frequency domain. It is possible to
sharpen the unit step input response by increasing the cutoff slope parameter and
decreasing the sharpness parameter

The following figure shows a unit step display of the filter’s amplitude response.

i Configuration

30 DSC Graphical Design

External Board Parameters

The following External Board Parameters are accessible from the
External Board Screen.

Input Type
The Input Type parameter configures the type of input signal. Valid input types
include DC coupling, AC coupling and Excitation.

Input Range
The Input Range parameter configures the input range. Please note that this input
range is different from the iDSC Input Range, and only works if the iDSC input
range is set to +/- 5V.

Valid input ranges are:

+/- 10 mV, +/- 20 mV, +/- 50 mV,

+/- 100 mV, +/- 200 mV, +/- 500 mV,
+H-1V,+-2V,+-5V, +-10V

Input Offset
The Input Offset parameter configures the input offset. The specified input
offset must be in the Input Offset.

Input Offset Range
The Input Offset Range parameters displays the valid input offset range. The
input offset range is determined by the selected Input Range.

For example, if the input range is +/- 500 mV then the input offset range is +/-2.5 V,
if the input range is +/- 2 V then the input offset range is +/- 1 V. This is a read only
parameter that is dependent on the input range and cannot be specified.

Valid input offset ranges are:

+/-0.5V when the input range is + /- 10 mV
+-1.0V when the input range is + /- 20 mV
+-2.5V when the input range is + /- 50 mV
+/-0.5V when the input range is + /- 100 mV
+/-1.0V when the input range is + /- 200 mV
+/-25V when the input range is + /- 500 mV
+-1.0V when the input range is +/- 1 V

DSC Graphical Design 31

+-1.0V when the input range is + /-2 V
+-50V when the input range is + /-5 V
+-50V when the input range is + /- 10 V

Output Excitation
The Output Excitation parameter configures the output excitation. Valid output
excitation voltages include 0 V, 1 V,2V, 5V, 10 V.

32 DSC Graphical Design

Section Il. Application Software

Section Il. Application Software

33

3. DSCview

DSCview provides immediate and easy access to one or more iDSC boards. From
DSCview, communication with an iDSC board is automatically initiated and requires
no programming.

DSCview provides a graphical interface to:
* Save and load workspaces
* Select system options
* Design and configure filters
* Perform signal conditioning
* Configure multiple iDSC boards
* Output data in a graph and table
* Disk log data to a text or binary file
* Server disk log data to a binary file by the server

DSCview is an invaluable diagnostic tool for confirming the proper operation of an
iDSC board and for testing filter characteristics.

The following five windows are available in DSCview, and are discussed in detail in
this chapter.

* Configuration Window

* Graph Window

* Table Window

* Disk Log Window

* Server Disk Log Window

DSCview 35

Save and Load Workspaces

In DSCview you can save current workspaces and load new or saved workspaces. The
extension for DSCview workspaces is . CFG.

The File menu item on DSCview’s main menu contains options to save and load
workspaces.

The following File menu options are discussed in detail below.

e File|New
Opens a new workspace. If changes have been made to the current workspace,
DSCview prompts you to save the changes.

* File|Open
Opens an existing workspace. If changes have been made to the current
workspace, DSCview prompts you to save the changes.

* File|Close
Closes an opened workspace. If changes have been made to the current workspace,
DSCview prompts you to save the changes.

* File|Save
Saves the current workspace. If a filename has not yet been assigned, DSCview
prompts you for a filename.

* File|Save As
Saves the current workspace with a specified filename.

e File|Exit
Exits DSCview.

In addition to loading workspaces from the file menu, a configuration may also be
automatically loaded from the command line as shown below. In this example, we are
assuming that DSCview.exe and Graph.cfg are located in C: \.

C:\DSCview C:\Graph.cfg

Start & Stop

The Start! and Stop! menu items are available from the main DSCview window.

Start!
The Start! menu item appears when DSCview is not acquiring data. When Start!
is selected, data acquisition begins, and Start! changes to Stop!.

36 DSCview

While DSCview is acquiring data the following items become gray and cannot be
changed.

* File and System Options menu items of the main system.

* Selectable options of the Configuration window.

* Graph Options|History and Graph Options|Display menu items of the
Graph Window.

* Table Options|Historyand Table Options|Display menu items of the
Table Window.

* Channels and Disk Log Options menu items of the Disk Log Window.

Stop!
The Stop! menu item appears when DSCview is acquiring data. When Stop! is
selected, data acquisition terminates, and Stop! changes to Start!.

System Options

The System Options are available from the main DSCview menu, and are accessible
from all active windows.

The following System Options are discussed in detail below.
* System|Address
* System|Board Setup Display
* System|Calibrate
* System|Commands Load
* System|Configuration Lock
* System|Memory Display

System|Address
The System|Address menu item selects the iDSC board to communicate with.
When selecting the iDSC board, System|Address uses the Universal Naming
Convention. The default iDSC board name is \\.\Dap0 for DSCO0, \.\Dap1 for DSCI,
\.\Dap2 for DSC2, etc. For detailed information about the Universal Naming
Convention, please refer to the Programming Interfaces section of this document.

System|Board Setup Display
The System|Board Setup Display menu item displays the setup configuration
of a group of iDSC boards in the Configuration Window. Applications that have
more than one iDSC board must enable this menu item to gain access to multiple
iDSCs boards.

DSCview 37

System|Calibrate
The System|Calibrate menu item calibrates the iDSC board for DC gain and
offset. The first time Start! is selected, the iDSC board is automatically calibrated.
The progress of iDSC calibration is displayed in the bottom border of DSCview.

System|Commands Load
The System|Commands Load menu item configures the iDSC board with the
appropriate programs and coefficients. System|/Commands Load should be selected
only when the iDSC board configuration or filter designs change.

If the iDSC board configuration or filter designs change and Start! is selected,
Start! automatically invokes System|Commands Load and downloads new
commands to the iDSC board. Data will show up at the PC two times Group Delay
seconds later.

If the iDSC board configuration or filter designs change and System|Commands
Load is selected before Start!, data show up immediately at the PC. Data that show
up immediately are actually data that were sampled group delay seconds ago.

System|Configuration Lock
The System|Configuration Lock menu items locks the configuration of the
iDSC. This means that the number of iDSC boards, address and mode, and the Input
Screen and Filter Design Screen parameters cannot be changed until the
configuration is unlocked.

System|Memory Display
The System|Memory Display menu item displays the used memory on the iDSC
board. System|Memory Display is useful in determining whether or not the iDSC
board will be able to sustain a particular sample rate without overflowing. The
memory used is displayed in the bottom border of DSCview.

38 DSCview

Configuration Window
The Configuration Window is designed to simplify the iDSC board input
configuration and filter design process. The Configuration Window is a derivative of

DSC Graphical Design interface. For detailed information about the Configuration
Window, please refer to the DSC Graphical Design chapter of this document.

The following figure displays the Input Screen of the Configuration Window.
i DS Cwview for Windows

i=* Configuration: DSCO

Lt B B B B |

R T
B
I
T
IO I
e s]
e Jroe A
B I

|30 x| 45 2100 x| ¥ 2|0] x|

DSCview 39

The following figure displays the Filter Design Screen of the Configuration Window.

= DSCwview for Windows

i=* Configuration: DSCO0

40 DSCview

The following figure displays the Filter Design Screen of the Configuration Window
with System|Board Setup Display checked.

i DSCwview for Windows

i Configuration: DSCO

DSCview 41

Graph Window

The Graph Window displays graphical representations of acquired and filtered data
from the iDSC board. Only data from the selected channels are displayed. Any
number of graph windows are allowed. To select a new graph window, select
Window|New Graph.

When the Graph Window is active, the Channels and Graph Options menu items
are available on the main menu. The Channels menu item displays a button grid of
the enabled input pins, and the Graph Options menu item contains several options
for configuring the graphical display. The Graph Options menu items are described
later.

The Graph Window has zooming features. It also has channel data tracking features.
These features are described later.

The following figure displays the Graph Window.

i DSCview for Windows

42 DSCview

Channels
The Channels menu item displays a button grid of enabled iDSC board input pins.
A channel is selected when the button is down and deselected when the button is up.
There can be up to sixteen channels selected.

Graph Options|Enabled
The Graph Options|Enabled menu item enables or disables the Graph Window.
A check mark beside Enab1ed signifies that the Graph Window is enabled. If the
Graph Window is disabled and DSCview is started, no data are plotted.

Graph Options|History...
The Graph Options|History menu item determines the number of data points to
store in the Graph Window. Any number of data points from 100 up to 10000 may
be stored.

When DSCview is started, the Graph Options|History menu item is grayed and
cannot be changed.

Graph Options|Display...
The Graph Options|Display menu item modifies the Graph Window display.
Display items which can be modified include the titles, left axis, bottom axis, and
series colors.

When DSCview is started, the Graph Options|Display menu item is grayed and
cannot be changed.

DSCview 43

The following figure displays the Graph Options|Display dialog.

Graph Display

The Titles box is used to select titles for the main graphical display, left axis and
bottom axis. The default titles are Filtered Data, Volts and Sample.

The Left Axis box is used to configure the left axis for displaying data in
Voltage,Digital,or Customunits. Full Scale is used internally to calculate
an appropriate scale factor for the left axis display. The scale factor is (Full Scale
/ 32768).

Using Voltage units, Full Scale is either 5 or 10 because the input voltage range
is either -5 to +5 volts or -10 to +10 volts. The scale factor is (5 / 32768) or (10

44 DSCview

/ 32768).Using Digital units, Full Scale is 32768 because the integer range
is -32768 to 32767. The scale factor is (32768 / 32768) or no scaling. Using
Customunits, Full Scale is a number, x that corresponds to a 5 or 10 volt
reading. The scale factoris (x / 32768).

Min and Max are used to define a range for graphically displaying the data. The
display range must fall between -Full Scaleand +Full Scale or an error box
will appear. Inc displays the spacing between the left axis ticks in the Min to Max
range. If Inc is too small to fit all of the ticks on the display, Inc will be
automatically adjusted.

The Bottom Axis box is used to configure the bottom axis for displaying data in
Sample, Seconds, or Mil1liseconds units. The number of points that the user
wishes to view per graph display are entered into the View Points field. Any
number of points within the range 100 to 1024 are valid.

The Series Colors box is used to select from sixteen different colors to represent
the selected channels. The legend on the right side of the Graph Window displays
the selected channels and their corresponding colors. Any sequence of up to sixteen
colors may be displayed.

Zooming
The Graph Window has zooming in features. To zoom in, place the cursor over the
points of interest and use the left mouse button to create a rectangular box. When the
left mouse button is released, the area inside the rectangular box is enlarged. You
can zoom in indefinitely but the Graph Window only keeps a history of the five most
recent zoomed in levels. There is also a minimum zoom in of 20 samples for the x
axis and 20 counts for the y axis.

To view the saved zooms, use the right mouse button. Zoom Level shows which
saved zoomed in level is currently displayed, with a maximum of five zoomed in
levels. It is read only and non selectable. The Zoom Level of 0 is the original
unzoomed display. Zoom Next displays the next saved zoom and Zoom Back
displays the previous saved zoom. Zoom Clear clears all saved zooms.

Data Tracking
The Graph Window has channel data tracking features. To track the data of a
channel, click and hold down the left mouse button over the channel of interest from
the legend located on the right side of the Graph Window. Then drag the cursor over
the plotting screen, and the corresponding data values will be located at the bottom
left corner of the Graph Window.

DSCview 45

Table Window

The Table Window displays text representations of acquired and filtered data from the
iDSC board. Only data from the selected channels are displayed. Any number of table
windows are allowed. To select a new table window, select Window | New Table.

When the Table Window is active, the Channels and TabTle Options menu items
are available on the main menu. The Channels menu item displays a button grid of
the enabled input pins, and the Table Options menu item contains several options
for configuring the table display. The Table Options menu items are described
later.

The following figure displays the Table Window.

= DSCview for Windows

File Starl Systern Channels Table Options Window Help

i Table M= E3

DECO:AD | DSCO:AT | DECOAZ | DSCOAS | DSCOAS | DSCO:AL | DSCRAR | DSCO:AT ﬂ
-26791 -17225 -1z 17228 -17223 -1111 1113 -274967
-24442 | -20978 -1882| -20978| 20977 1581 -1583| -27967
-27431 -23340 -18768| -23340| -23338 -1877 -1878| -27967
-29726| -E4162 -1981 -24162 | -24161 1980 -1981 -27967
-27572| -23395 -1885| -23396| -23394 -1884 -1885| -27967
-24473| -21086 -1895| -21086| -21085 -1595 -1586| -27967
-26583 | -17378 -1131 -17378| 17378 -1130 -1132| -27467
-31986| -126M01 -620) -12501 -12501 520 -521 -27967
-28151 6757 149 -6757 -b757 200 199 27967

-7153 -502 983 -502 602 983 982 27967
19926 hE76 1782 h876 h876 1781 -27967
32767 11982 2546 11982 114982 25846 -27967
32767 17437 3229 17436 17437 32e9, -BV467
274957 21903 3768 21902 21903 3787 -B7967

i Graph f=d =] B = DisKiEa g =] =]
DECA Mernory Used: . 73

46 DSCview

Channels
The Channels menu item displays a button grid of enabled iDSC board input pins.
A channel is selected when the button is down and deselected when the button is up.
There is no limit on the number of channels selected.

Table Options|Enabled
The Table Options|Enabled menu item enables or disables the Table Window.
A check mark beside Enab1ed signifies that the Table Window is enabled. If the
Table Window is disabled and DSCview is started, no data are displayed.

Table Options|History...
The Table Options|History menu item determines the number of data points to
store in the Table Window. Any number of data points from 100 to 10000 may be
stored.

When DSCview is started, the Table Options|History menu item is grayed and
cannot be changed.

Table Options|Display
The Table Options|Display menu item modifies the Table Window display.
Display items which can be modified include the column widths and row heights.

In addition to modifying the column widths and row heights as a group, each column
in a display may have a different width. To change the width of an individual
column, place the mouse over the column separators and click the left mouse button
and then drag the mouse left or right until you have obtained the desired column
width.

When DSCview is started, the Table Options|Display menu item is grayed and
cannot be changed.

DSCview 47

Disk Log Window

The Disk Log Window logs acquired and filtered data from the iDSC board to a disk
file in binary or text format. Only data from the selected channels are logged. Any
number of disk log windows are allowed. To select a new disk log window, select
Window|New Disk Log. Each disk log window only allows logging data from
within the same iDSC.

When the Disk Log Window is active, the Channels and Disk Log Options menu
items are available on the main menu. The Channels menu item displays a button
grid of the enabled input pins, and the Disk Log Options menu item contains
several options for logging data to disk. The Disk Log Options menu items are
described later.

The following figure displays the Disk Log Window.

= DSCview for Windows

i DiskLog

48 DSCview

Channels
The Channels menu item displays a button grid of enabled iDSC board input pins.
A channel is selected when the button is down and deselected when the button is up.
There is no limit on the number of channels selected.

When the channels are selected or deselected, the Disk Log Window updates the
selected channels under the Input Sources label. Each disk log window only
allows channel selection within the same iDSC.

When DSCview is started, the Channels menu item is grayed and cannot be
changed.

Disk Log Options|Open File
The Disk Log Options|Open File menu item opens a new file for logging data
to disk. When a file is opened, the filename is displayed under the Output File
label.

Selecting either the .BIN or . TXT extension from List files of type
automatically marks the Disk Log Options|Format as Binary or Text. Note
that all file extensions must be explicitly typed.

When DSCview is started, the Disk Log Options menu item is grayed and cannot
be changed.

Disk Log Options|Close File
The Disk Log Options|Close File menu item closes the opened log file.

To view a log file in an editor or environment other than DSCview, it is important to
first close the log file in DSCview before switching to the other environment.

Disk Log Options|Format
The Disk Log Options|Format menu item selects the format for logging data to
disk. Data may be formatted as binary or text, and a check mark beside a formatting
option indicates which format is selected. Data logged as text are delimited by tabs.

When a new file is opened with the Disk Log Options|Open File menu option,
the file extension may be selected using List files of type. Selecting either
the .BIN or . TXT extension from List files of type automatically marks the
Disk Log Options|FormatasBinary or Text.

DSCview 49

Server Disk Log Window

The Server Disk Log Window is available only when server disk logging is enabled
by clicking the right mouse button in the Group Interface and selecting Server Disk
Log. This window displays the iDSC board name, the number of samples logged, and
the output file name.

The following figure displays the Server Disk Log Window.

i DSCview for Windows

i ServerDiskLog

50 DSCview

4. Using the iDSC Board with DASYLab

The iDSC board includes a driver to seamlessly integrate with DASYLab 4.x.
Combining DASY Lab with the iDSC board provides many convenient features:

* Access to standard iDSC board filter parameters through an iDSC board module

* iDSC board channels wired directly to other DASY Lab modules

* Additional iDSC board modules to access more than one iDSC board

+ All iDSC board parameters saved with the DASY Lab worksheet

» Master/slave mode used to synchronize several iDSC boards

Installing iDSC Board Support for DASYLab

When the iDSC board software is installed, a directory named IDSC\APPSW\DLAB is
created that contains DASY Lab support files. Copy this directory and its contents to
the DASY Lab installation directory. The following example displays how to copy the
files in a DOS shell:

XCOPY *Lox “C:\PROGRAM FILES\DASYLAB”

Note: Replace the directory names above with the correct paths for your PC.

To enable the iDSC board menu, edit the file DASYLAB. INT located in the Windows
directory. Find the section named [EXTEND] and modify the DLL1 line to appear as
follows:

DLLI=DLAB_DSC.DLL

Start DASYLab to verify that installation was successful. A new menu option will
appear in the main menu titled “Microstar iDSC.” Use File/Open to open the example
DSC1.DSB in the DASYLab directory. The example will display an iDSC board
module and will show one trace on a graph when the worksheet is started.

Using the iDSC Board with DASYLab 51

Using an iDSC Board Module with DASYLab

To place an iDSC board module on the worksheet, select New iDSC from the
“Microstar iDSC” menu. An iDSC board module will appear with one active channel.
The outputs of the iDSC board module may be wired to other DASY Lab modules.

To configure the iDSC board, double-click on the iDSC board module to display the
standard iDSC board configuration screen. You may activate additional channels and
configure the filter parameters for each channel. The iDSC board configuration dialog
box used in DASYLab is the same dialog box used by DSCview and other iDSC
board applications.

Running the DASYLab iDSC Board Examples

Several examples show how DASY Lab interfaces with the iDSC board. The examples
are located in the IDSC directory under the DASYLZab install directory. To run the
examples, verify that the iDSC board and iDSC board software are installed and that
DSCview works properly. Exit DSCview before running the DASYZab iDSC board
examples. The DASYLab examples are titled “DSCx.DSB” where x is the example
number.

Using More Than One iDSC Board with DASYLab

Up to fourteen iDSC boards may be used with DASYLab. Select New iDSC from the
“Microstar iDSC” menu to create a new module for each board. An iDSC board must
be installed for each new iDSC board module placed on the DASY Lab worksheet or
an error message will be displayed. Configure each new module in the same manner as
the first iDSC board module.

52 Using the iDSC Board with DASYLab

Synchronizing Several iDSC Boards

The DASYLab iDSC board module supports master/slave mode which allows
synchronization between several iDSC boards. Synchronization provides true
simultaneous sampling across several iDSC boards. To enable master/slave mode,
select Use Master/Slave Mode from the “Microstar iDSC” menu.

In DASY Lab, the first iDSC board, iDSC0, is always the master board. All additional
iDSC boards are slave boards. Slave iDSC boards are automatically configured to use
the same sample rate as the master iDSC board. Note that this automatic configuration
will cause iDSC board parameters to change if the sample rate is not already set to the
same value as that of the master iDSC board. For this reason, we recommend saving
the worksheet before selecting the Use Master/Slave Mode option.

Note: Refer to the Multiple Board Installation section of this document for
hardware configuration details of master/slave boards.

Special Addressing

There may be times when DASY Lab needs to access an iDSC board that is not at the
default UNC address. This may occur when an iDSC board is used in a PC with DAP
boards, or when DAPcell is used to access an iDSC board in another PC. To change
the default address that DASY Lab uses edit the file DASYLAB. INI. Add the following
section and key words:

[iDSC]
Addr@ = \\.\dap®@

Modify the address to match the desired address. Additional lines may be added for
more than one iDSC board.

Using the iDSC Board with DASYLab 53

5. Using the iDSC Board with LabVIEW

LabVIEW provides a graphical programming environment for which the iDSC board
provides an ideal signal conditioning and data acquisition front end. A LabVIEW
application can call iDSC board functions in the DSCIO DLL to acquire the full
programmability and power of the iDSC board.

LabVIEW accesses iDSC board functions in DSCIO DLL through the Call
Library Function node, which is a VI library function in LabVIEW. It is easy to
use with a dialog box to configure all of the parameters required for each function.

Microstar Laboratories simplifies the task further by providing this package - iDSC
Board support for LabVIEW. This package contains this reference manual and
DSC. LLB, which contains the following components.

1. A collection of Call Library Function nodes for each functions in
DSCIO DLL

2. Several subVlIs to aid reducing the development time for an application

3. Several examples to show the use of many of the Call Library
Function nodes and subVls.

The iDSC support for LabVIEW supports LabVIEW version 5.1 or later.

Installation

The following steps show the procedure on installing iDSC Board support of
LabVIEW.

1. LabVIEW must be installed correctly. Please refer to the LabVIEW
installation instructions.

2. Install iDSC Development from the DAPtools CD. The default installed
directory is C:\Program Files\Microstar Laboratories\iDscDev. The
iDSC Board Support for LabVIEW can be found in the APPSW\BIN subdirectory.

3. To verify the iDSC board and its software are installed and running properly,

please run DSCview in the APPSW\BIN subdirectory. Exit DSCview before
running any iDSC board examples or applications in LabVIEW.

Using the iDSC Board with LabVIEW 55

Creating an iDSC Board Application in LabVIEW

A new application in LabVIEW may be created by modifying one of the examples
described below. The following section provides an outline about how LabVIEW
interfaces to the iDSC board.

An iDSC board application should performs the following steps:
1. Opens a handle to an iDSC board with the function DscHand1eOpen.
2. Defines the configuration of the board using a dialog box, a saved configuration
file, or iDSC board configuration functions
3. Starts data acquisition with the function DscStartAcquiring.
4. Reads and processes the acquired data.
5. Stops data acquisition with the function DscStopAcquiring.
6. Closes the handle to the iDSC board with the function DscHand1eClose.

The iDSC Init subVI provides all of the initialization routines, step 1 to 3, in one
subVI.

After initialization, an application can read data from the iDSC board by using either
DscBufferGet or DscBufferGetEx. The iDSC Read subVI performs the read data
routines, step 4, in one subVI.

The iDSC Close subVI provides all of the termination routines, step5 and 6, to stop
acquisition and terminate communication with the iDSC.

It is important to terminate the communication with the iDSC board using the
provided functions in DSCIO DLL. The STOP button on the button bar does not stop
the iDSC board, meaning THE iDSC WILL CONTINUE TO RUN EVEN THOUGH
THE LABVIEW STOP BUTTON WAS PRESSED. It is best to put a button on the
user panel that controls the termination of a run. The STOP button should enable the
final sequence to run the iDSC Close subVI which closes the ACCEL32 Handle
assigned to the application. Please see examples on how to accomplish this.

Running the LabVIEW iDSC Board Examples

Several examples applications are included and demonstrate how LabVIEW interfaces
with an iDSC board. The examples can be found in DSC. LLB in the APPSW\LABVIEW
subdirectory under the installed directory. To run the examples, an iDSC board and its
software have to be installed and running properly.

56 Using the iDSC Board with LabVIEW

App01 - BASIC

This example provides a very easy to use interface to an iDSC board. It uses one
object, iDSC subVI, to provide access to iDSC configuration options and resulting
data. This example reconfigures the iDSC board for each new block of data. For
continuous operation and even more flexible options see the next example, App02.

App02 - GRAPH

This example is similar to AppOl but adds transferring data continuously and
configurability in accessing an iDSC board. This example uses an iDSC Init subVI to
initialize iDSC board communication. The iDSC Init subVI will return the number of
active channels. Based on this information, an iDSC Read subVI is used to read
blocks of data and send the data to a graph, which automatically configures itself for
the proper number of channels.

App03 - LOG

This example is similar to App02 but adds logging data to a file. Note that LabVIEW
may use a special data format for data storage that may need conversion if read by
applications other than LabVIEW.

App04 - LOGVW

This example shows how to read the file created by App03. This example is
configured to read data for eight channels. If the data file is acquired for a different
number of channels, the Number of Channels field needs to be modified accordingly.

App05 - DaplIFFT

This example shows how to use DAPL interface. It configures an iDSC board with
DAPL commands, reads data, and graphs the data with one trace for each channel. In
this example, the DAPL commands configure the iDSC board to calculate forward fast
Fourier transforms (FFT) of blocks of real-values data and send an amplitude
spectrum to this example in LabVIEW. The amplitude spectrum received from
iDSC Read will be sent to a graph for display.

App06 - DapICC

This example is similar to App05 but applies custom commands BZTRUNC and RAVE
to input channels instead of FFT. The BZTRUNC command truncates any number

Using the iDSC Board with LabVIEW 57

below 0 in an input channel, and RAVE computes the running average of the specified
number of data points, 100 in this example, in an input channel. In this example, both
raw and analyzed data for the input channels are sent to this example. The data
received from iDSC Read will be sent to a graph for display.

App07 - Disk Logging (1 iDSC)

This example shows how to stream data directly to a disk file by using DAPcell Server
disk logging service. This is implemented by the DiskLog subVI, which loads
configurations to a server by a wrapper function Ms1DscServerDiskLogConfigSet
. While the server is logging data to a disk file, the number of data being logged will
be queried by using a Num Data subVI.

The server continues to log data to the disk file until the specified amount of data in
DiskLog subVI, which is 100000 values per channel in this case, have been recorded,
or the STOP button is pressed.

Before running this example, please make sure the following configurations are
correct.

- The disk logging option is enabled and a valid default path is entered in Windows
Control Panel | Data Acquisition Processor | Disk I/O.

App08 - Disk Logging (2 iDSC with synchronization)

This example is similar to App07 but adds one more iDSC board. The two iDSC
boards are synchronized as master and slave by using iDSC MaSI subVI. Similar to
App07, this example logs data to a disk file by a server and queries for the number of
byte being logged to each file for each board.

The server continues to log data to the disk file until the specified amount of data in
DiskLog subVI, which is 100000 values per channel in this case, have been recorded
for each boards, or the STOP button is pressed.

Before running this example, please make sure the following configurations are
correct.

- Two iDSC 1816 boards are connected by a synchronization cable, with part number
MSCBL 078.

- The disk logging option is enabled and a valid default path is entered in Windows
Control Panel | Data Acquisition Processor | Disk 1/0.

58 Using the iDSC Board with LabVIEW

App09 — A Group of iDSC

This example shows how to use group services provided by DSCIO DLL. In this
example a DSCIO DLL function DscGroupConfigDialogShow is called to display
a modal dialog screens for graphical configuration of multiple iDSC boards. It loads a
configuration file GROUP.DSC for a group of two iDSC boards, which are configured
as independent. The two iDSC boards can be synchronized by setting the approperiate
mode. For more information, please see DscGroupConfigDialogShow.

The iDSC Read subVI are used to read blocks of data from the iDSC boards. The data
will be sent data to graphs, which automatically configures themselves for the proper
number of channels based on the dimension of the data array.

Using the iDSC Board with LabVIEW 59

DLL Reference

This package contains a list of Call Library Function nodes that are configured
to call the functions in DSCIO DLL and MSLAPP DLL. The list can be found in
DSC. LLB, which is located in the APPSW\LABVIEW subdirectory under the installed
directory.

DSCIO DLL Function Reference

This DSCIO DLL provides a complete set of functions for communicating with iDSC
boards. The table below shows a complete list of Call Library Function nodes
and its corresponding functions in DSCIO DLL. The name of each Call Library
Function node may slightly different than the corresponding function in DSCIO
DLL, but they share the same parameters list. For more information on the parameter
lists, please see DSCIO Reference manual.

Call Library Function nodein

DSC.LLB DSCIO DLL Functions
DscHandleOpenA DscHandleOpen
DscHandleClose DscHandleClose
DscCalibrate DscCalibrate
DscCommandsLoad DscCommandslLoad
DscStartAcquiring DscStartAcquiring
DscStopAcquiring DscStopAcquiring
DscBufferAvail DscBufferAvail
DscBufferGet DscBufferGet
DscBufferGetEx DscBufferGetEx
DscConfigRead DscConfigRead
DscConfigWrite DscConfighrite
DscConfigWriteSize DscConfigWriteSize
DscConfigDialogShow DscConfigDialogShow
DscFilterNameGet Obsolete
DscFilterNameSet Obsolete

DscFilterParametersGet
DscFilterParametersSet

DscFilterParametersGet
DscFilterParametersSet

DscPinToFilterMapGet DscPinToFilterMapGet
DscPinToFilterMapSet DscPinToFilterMapSet
DscFilterIndexA DscFilterIndex

DscGroupDelay DscGroupDelay

DscAddressGetA DscAddressGet

60 Using the iDSC Board with LabVIEW

DscAddressSetA
DscldGetA

DscldSetA
DscOperateModeGet
DscOperateModeSet
DscSampleRateGet
DscSampleRateSet
DscPinEnabledGet
DscPinEnabledSet
DscPinEnabledCount
DscMasterGet
DscMasterSet
DscSlaveCount
DscMemoryUsed (new)
DscLastErrorTextGetA
DscLastErrorTextSetA
DscDaplTextSetA
DscDaplTextLengthGet
DscDaplTextGetA
DscDaplCCDownloadGet
DscDaplCCDownloadSet
DscDaplCCListGetA
DscDaplCCListLengthGet
DscDaplCCListSetA
DscDaplCCStackSizeGet
DscDaplCCStackSizeSet

DscServerDiskLogEnabledSet (new)
DscServerDiskLogEnabledGet (new)

DscServerDiskLogBytes (new)
DscXbCalibrate (new)
DscXbEnabledGet (new)
DscXbEnabledSet (new)
DscXbPinConfigGet (new)
DscXbPinConfigSet (new)
DscGroupConfigDialogShow (new)
DscGroupHandleOpen (new)
DscGroupHandleClose (new)
DscGroupAddOne (new)
DscGroupDeleteOne (new)
DscGroupCount (new)
DscGroupDsc (new)
DscGroupConfigRead (new)d

Using the iDSC Board with LabVIEW

DscAddressSet

DscldGet

DscldSet
DscOperateModeGet
DscOperateModeSet
DscSampleRateGet
DscSampleRateSet
DscPinkEnabledGet
DscPinkEnabledSet
DscPinEnabledCount
DscMasterGet
DscMasterSet
DscSTaveCount
DscMemoryUsed
DsclLastErrorTextGet
DsclLastErrorTextSet
DscDaplTextSet
DscDaplTextlLengthGet
DscDaplTextGet
DscDapl1CCDownloadGet*
DscDapl1CCDownloadSet*
DscDapl1CCListGet*
DscDaplCCListLengthGet*
DscDapl1CCListSet*
DscDapl1CCStackSizeGet*
DscDapl1CCStackSizeSet*
DscServerDiskLogEnabledSet
DscServerDiskLogEnabledGet
DscServerDiskLogBytes
DscXbCalibrate
DscXbEnabledGet
DscXbEnabledSet
DscXbPinConfigGet
DscXbPinConfigSet
DscGroupConfigDialogShow
DscGroupHandleOpen
DscGroupHandleClose
DscGroupAddOne
DscGroupDeleteOne
DscGroupCount
DscGroupDsc
DscGroupConfigRead

61

DscGroupConfigWrite (new) DscGroupConfighrite
DscGroupConfigWriteSize (new) DscGroupWriteSizes

* For more information, please see obsolete interface in the
DSCIO Function Summary.

MSLAPP DLL Function Reference

Due to the data types in LabVIEW, some DSCIO functions, which initialized by
structures, cannot be accessed directly in LabVIEW. A wrapper function is
implemented to interface between DSCIO DLL and LabVIEW. The wrapper function
builds the structure, and passes it to the DSCIO function it interfaces with. All
wrapper functions have the prefix Msl with the function for which they interface.

DSCIO DLL Routines Call Library Function nodein DSC.LLB

DscServerDiskLogConfigSet Ms1DscServerDiskLogConfigSet

Data Format

The DSCIO DLL function reference uses C data types when specifying the type of
each parameter. Here is a brief cross references to help determine corresponding
LabVIEW data types:

C Data Type LabVIEW Data Type

Char* C String Pointer

Int Signed 32-bit Integer

Short * Signed 16-bit Integer

Long Unsigned 32-bit Integer

Double Double

HDSC Signed 32-bit Integer

TbufferGetEx Array Data Pointer of Signed 32-bit Integer. See

iDSC Read subVI for an example of using this
structure in LabVIEW. See DSCIO Reference
Manual for details.

TDsclolInt64 Array Data Pointer of Signed 32-bit Integer. For
example usage, please see Num Data subVI. For
more information, please see DSCIO Reference
Manual.

62 Using the iDSC Board with LabVIEW

TfilterParam

TxbPinConfig

Array Data Pointer of Signed 32-bit Integer. For
more information, please see DSCIO Reference

Manual.

Array Data Pointer of Signed 32-bit Integer. For
more information, please see DSCIO Reference

Manual.

MsiDscServerDiskLogConfigSet

b =lDscS erverDizk LogConfigh et

Name
(Type)

hDsc
(Integer)
Flag
(Long)

LogFile
(String)

FileShareMode
(Long)

OpenFlags
(Long)

FileFlagsAttr
ibutes

(Long)
BlockSize
(Long)

Corresponding parameters in
TServerDiskLogConfigand
brief descriptions

DwFTags

Specifies various logging
options.

pszFileName

Points to a null-terminated string
that specifies the name of the
disk logfile.

dwFileShareMode

Specifies the file share properties
of the disk logfile.
dwOpenFlags

Specifies how file opening is to
be handled.
dwFileFlagsAttributes
Specifies additional file
attributes.

dwBlockSize

Specifies the minimum amount
of data, in bytes, to write to the

Using the iDSC Board with LabVIEW

Output

Pass-
throug

True

True

True

True

True

True

True

63

logfile at one time.

8: Lowi64 I64MaxCount 8: True
(Long) Specifies the low 32-bit
maximum number of bytes to
log.
9: Highi64 I64MaxCount 9: True
(Long) Specifies the high 32-bit
maximum number of bytes to
log.

This Call Library Function node builds the structure TServerDiskLogConfig
and passes it to DscServerDiskLogConfigSet, which initiates a disk logging
session between an iDSC board specified by hDsc and a disk file specifies by
LogFile. The parameter B1ockSize is provided for disk transfer optimization. The
default value is 8192.

If a full path is not given for the parameter LogFi1e, the log file resides in the default
directory specified in the Control Panel | Data Acquisition Processor | Disk I/O on the
server PC.

The disk logging sessions starts when DscStartAcquiring is invoked. Once it
starts, it continues until the number of bytes specified in Lowi64 and Highi64 has
been logged or until DscStopAcquiring or DscHandTeClose is invoked on hDsc.

If the function succeeds, the return value is 1. If the function fails, the return value is
0.

64 Using the iDSC Board with LabVIEW

SubVls Reference

This package provides several subVIs to make it easy to configure and cleanup iDSC
board communication. In LabVIEW if you select Show | Help from the Help menu,
and place the mouse cursor over the subVI, diagrams as shown below will appear. To
place a subVI onto a LabVIEW diagram:

1. Right click on the diagram.

2. Choose “Select a VI”.

3. Open DSC. LLB and select the desire subVI.

In the following subVIs, most input parameters are optional. If the input parameters
are missing, default values will be used.

iDSC Init

This subVI provides an easy way to configure an iDSC board. It allows the user to
access different boards, download DAPL and custom commands, and select a
previously saved iDSC board filter configuration.

Custom command ligt =y

iD'5C configuratian file = DsC i0SC Handle Pass Through
Configuration Dialog Box ShowFm Int_ —— Sample rate
iD5C Path mj‘""‘ T Nyumber of channels

DAPL Comrmandz

iDSC Init has five inputs:
1. Custom Command 1ist isa list containing names and size of custom
commands.
String.
Default is (None).
2.1DSC configuration file contains the filename of an iDSC board
configuration.
String.
Default is IDSC1.DSC.
3.Configuration Dialog Box Show determines whether the iDSC board
configuration dialog box is displayed.
Boolean.
Default is TRUE
4.1DSC Path is an UNC path specifies the target iDSC board to be opened.
String.
Default is \\ . \Dap®.

Using the iDSC Board with LabVIEW 65

5. DAPL Commands contains DAPL commands for configuring an iDSC board
String.
Default is (None).

iDSC Init has three outputs:
1.iDSC handle Pass Through is the handle of the iDSC board.
Integer.
2. Sample rate reports how fast the iDSC is acquiring data.
Integer.
3. Number of channels reports the number of active channel.
Integer.

iDSC Init performs the following operations:

1. Opens a handle to the iDSC board specified by iDSC Path with the function
DscHandleOpen.

2. Defines custom commands with DscDap1CCListSetA and enables downloading
with DscDap1CCDownloadSet if Custom Command 11st is not equal to
(None).

3. Defines DAPL commands with DscDap1TextSetA if DAPL Commands is not
equal to (None).

4. Attempts to load the specified iDSC board configuration file with

DscConfigRead, and defaults to the standard configuration.

5.1f Show dialog box? input option is true, an iDSC board configuration dialog
box will be loaded with DscConfigDialogShow.

6. Saves the configuration to a file with DscConfigWrite after a prompt to the user
to replace an old file. If the file does not exist, it will be created. If no file name is
specified, the default file will be used.

7. Begins data acquisition with the function DscStartAcquiring.

8. Gets the sample rate with the function DscSampleRateGet.

9. Gets the active channels with the function DscPinEnabledGet, counts and
returns the number of active channels.

The inputs Custom Command 1ist and DAPL commands normally are not used.
They can be used if data processing is desired.

If you are using more than one iDSC board, it generally is the best to make a copy of
iDSC Init, and provides an address to a target iDSC board and a configuration file if
there is any.

iDSC Read

This subVI gets one block of data from an iDSC board.

66 Using the iDSC Board with LabVIEW

Timelut

))
i0SC Handle iDsC iDSC Handle Pazz Through
YaluesToRead - Fead = [ata
Number of Channels f T Retum Code
Timei ait

iDSC Read has five inputs:

1. TimeQut is the maximum amount of time in milliseconds that the get operation
should complete. If it fails to complete in this amount of time, the service aborts
the operation.

Integer.
Default is 10000.

2.1DSC Hand1e specifies the handle to the target iDSC board. It has to be passed
by iDSC Init, or previously opened DscHand1eOpen.

Integer.
Default is 0.
3. ValuesToRead specifies the number of data per channel should get for each
operation.
Integer.
Default is 500
4. Number of Channels is the number of active channel.
Integer.
Default is 1.

5. TimeWait is the maximum amount of time in milliseconds that the get operation
can be blocked waiting for data. If no data show up in that amount of time, the
service aborts the operation.

Integer.
Default is 10000.

iDSC Read has three outputs:

1. iDSC Handle Pass Through is the handle of the iDSC board being passed

through.
Integer.
2. Data is a pointer to an array, which contains data from the iDSC board.
Array pointer.

3. Return Code reports the result of the get operation. If the get operation is
succeeds, it contains the number of data bytes read. If the get operation fails, it
contains -1.

Integer.

iDSC Read performs the following operations:
1. Builds and initializes an array for the required structure TBuf ferGet.
2. Builds and initializes a one-dimensional array for storing the returned data.

Using the iDSC Board with LabVIEW 67

3. By passing the arrays to the function DscBufferGetEx, iDSC Read gets data
from the iDSC board specifies by iDSC Handle.
4. Re-dimension the returned data array as a two-dimensional array with size M by
N, where M is ValuesToRead and N is Number of Channels.

iDSC Close

This subVI terminates the communication with the iDSC board.

[
Cloze
—_—

iD5C Handle

iDSC Close has one input:
1.iDSC Hand1e specifies the handle to the target iDSC board. It has to be passed
by iDSC Init, or previously opened DscHand1eOpen.
Integer.
Default is 0.

iDSC Close has no output:

iDSC Close performs the following operations:
1. Stops data acquisition on the iDSC board specified by iDSC Hand1e with the
function DscStopAcquiring.
2. Terminates the communication with the iDSC boards specified by iDSC Handle
with the function DscHandTeClose.

iDSC

This subVI initiates a communication with an iDSC, reads one block of data, and
terminates the communication.

YaluesToRead DEC E:E:m Code
ﬁ% Sample Rate
MNurber OF Channels
iDSC has one input:
1. ValuesToRead specifies how many data per channel should be get for each
operation.
Integer.

Default is 500

iDSC has four outputs:

68 Using the iDSC Board with LabVIEW

1. Return Code reports the result of the get data operation. If the get data
operation is succeeds, this variable contains the number of data bytes read. If the
get data operation fails, this variable contains -1.

Integer.
2. Data is a pointer to an array, which contains data from the iDSC board.
Array pointer.
3. Sample rate reports how fast the iDSC is acquiring data.
Integer.
4. Number of channels reports the number of active channel.
Integer.

iDSC performs the following operations:
1. Initiates a communication with iDSC Init subVI.
2. Reads a block of Number of Values To Read data with iDSC Read subVI.
3. Terminates the communication with iDSC Close subVI.

For example usage, please see AppOl.

iDSC MaSI

This sub-VI initiates a communication with two iDSC boards and synchronizes them
by setting master/slave properties.

iDSCO Path IrEllf'Sé:l iDSCO0 Handle Pass Through
iD5SC1 Path 2 = iD5SC1 Handle Pasz Through

iDSC MaSI has two inputs:

1. iDSC@ Path is an UNC path specifies the target iDSC board to be opened, and
it will be configured as a master board.
String.
Defaultis \\ . \Dap®o.

2.1DSC1 Path is an UNC path specifies the target iDSC board to be opened, and
it will be configured as a slave board for iDSC@ Path.
String.
Defaultis \\.\Dapl.

iDSC MasSl has two outputs:
1.iDSCO Handle Pass Through is the handle of the master iDSC board.

Integer.
2.1DSC1 Handle Pass Through is the handle of the slave iDSC board.

Integer.

Using the iDSC Board with LabVIEW 69

iDSC MasSl performs the following operations:
1. Open handles to iDSC boards specified by iDSC0 Path and iDSC1 Path with
the function DscHand1eOpen.
2. Connects the slave board at iDSC1 Path and the master board at iDSC® Path
with DscMasterSet.

This subVI configures the boards in software only. The configuration for master and
slave must be done in hardware by using a special cable. For more information, please
see Master/Slave Configuration in the DSCIO Reference Manual.

For example usage, please see App08.

DiskLog
WaluesToliog
FileFlagatributes
_ BlockSize ———
IESELHEH:"E N DLiSk‘ Retumn Code
ELear g 2 o - iDSC Hardle Pass Thiough

LogFile
FileShareMode —l_ T Error Buffer

OpenfFlags Murmber of Walues To Log

DiskLog has two inputs:

1. ValuesTolog specifies the amount of data will be logged from each active
channel.
Double.
Default is 100000 data per channel.

2. FileFlagAttributes specifies additional file attributes.
Integer.
Default is 1, which means normal attributes.

3. 0OpenfFlags specifies how file opening is to be handled.
Integer.
Default is 2, which means always open an existing file. If the file does not exist, it
will be created.

4.1DSC Hand1e specifies the handle to the target iDSC board. It has to be passed by
iDSC Init, or previously opened DscHandleOpen.
Integer.
Default is 0.

5.DiskLogFTlag specifies various logging options.
Integer.

Default is 1, which means log on the same side of the network connection as the
iDSC.

70 Using the iDSC Board with LabVIEW

6. LogFile specifies the name of the log file.
String.
Defaultis data.bin.
7. FileShareMode specifies the file share properties of the LogFiTe.
Integer.
Default is 1, which means the file can be read by another process.
8.BlockSize specifies the minimum amount of data, in bytes, to write to the
LogFile atone time.
Integer.
Default is 8192.

DiskLog has four outputs:
1. Return code is 1 if the server succeeds on setting the configuration for disk

logging. It is 0 if the server fails.
Integer.
2.1DSC handle Pass Through is the handle of the iDSC board being passed
through.
Integer.
3. Error Buffer contains the error message if it fails to configure for sever disk
logging.
String.
4. Number of Values To Log indicates the amount of data will be logged to
LogFiTe. Itis the product of number of active channels and ValuesTolog.

Double.

DiskLog performs the following operations:

1. Converts ValuesToLog to total number of bytes to read by multiplying
ValuesTolog, number of active channels from DscPinEnabledCount, and two.

2. Calls the wrapper function Ms1DscServerDiskLogConfigSet to initiate server
disk logging.

3. Sets the state of the server disk logging option with the function
DscServerDiskLogEnabledSet.

4. Returns the number of values will be logged for all channels in Number of
Values To Log.

The iDSC 1816 board has to be configured for server disk logging before start
acquiring data. So, a Disk Log subVTI has to be called before DscStartAcquiring.

If a full path is not given for LogFi1e, the log file resides in the default directory
specified in the Control Panel | Data Acquisition Processor | Disk I/O on the server
PC.

Using the iDSC Board with LabVIEW 7

For example usage, please see App07 and App08.

Num Data

This subVI queries for the number of bytes being logged to a disk file by a server.

h
DuaTa MumD atal ogged

iD5C Handle

Num Data has one input:
1. iDSC HandTe specifies the handle to the target iDSC board. It has to be passed by
iDSC Init, or previously opened DscHandleOpen.
Integer.
Default is 0.

Num Data has one outputs:
1. NumDatalogged specifies how many data have been logged by the server.
Double.

Num Data performs the following operations:
1. Initializes a two-element data array.
2. Queries for the number of bytes being logged by a server with the function
DscServerDiskLogBytes.
3. Recovers the result and stores it in a DOUBLE.

This subVI queries for the number of bytes being logged to a disk file by a server.
Since the function DscServerDiskLogBytes returns a 64-bit integer, which is not
supported by LabVIEW, this subVI is created to interface between DSCIO and
LabVIEW. The results are stored in two 32-bit integers. The first and second elements
of 164Count represent the low and high 32-bit of the result respectively. The 64-bit
result can be recovered by performing the following calculation:

64 - bit result =low 32 - bit + high 32 - bit x 2
The result of the calculation is stored in a DOUBLE in LabVIEW.

Get Error

This subVI gets the last error message that occurred in the DSCIO DLL.

et
Errar
_—

Error Buffer

72 Using the iDSC Board with LabVIEW

Get Error has no input:

Get Error has one outputs:
1. Error Buffer contains the error message.
String.

Get Error performs the following operations:
1. Creates and initializes a buffer to store the error message.
2. Get the last error message with the function DsclastErrorTextGet.

This subVI gets the last error message occurred in the DSCIO DLL. An error occurs

in the DSCIO DLL when a function call fails. It should be called immediately after the
Call Library Function node of interest.

Using the iDSC Board with LabVIEW 73

6. Using the iDSC Board with LabWindows/CVI

LabWindows/CVI provides graphical user-interface development with C code
programming for which the iDSC board supplies an ideal signal conditioning and data
acquisition front end. LabWindows/CVI uses DLL function calls to access the full
programmability and power of the iDSC board.

Running the LabWindows/CVI iDSC Board Example

A standard example shows how LabWindows/CVI interfaces with the iDSC board.
The example is located in the directory where 1DSC software was installed under the
subdirectory LWCVI. A typical location would be under
“c:\program files\Microstar Laboratories\idsc\appsw\lwcvi.”

To run the examples, verify that the iDSC board and iDSC board software are
installed and that DSCview works properly. Exit DSCview before running the
LabWindows/CVI iDSC board example. Set the working directory of LabWindows to
the directory with the example. Load the file GRAPH. PRJ and select the “Run Project”
menu option.

The example displays iDSC data in a strip chart. Select the buttons to configure, start,
and stop the iDSC board.

74 Using the iDSC Board with LabWindows/CVI

Creating an iDSC Board Application in LabWindows/CVI

A new LabWindows/CVI application may be created by modifying the example
described above. The following section provides additional details about how
LabWindows/CVI interfaces to the iDSC board.

An iDSC board application performs the following steps:

1. Opens iDSC board handles with the function DscHand1e0pen. This operation is
generally performed in the main() function before RunUserInterface() is
called.

2. Defines the configuration of the board using a dialog box, a saved configuration
file, or iDSC board configuration functions. The example above uses a dialog box
when a button is pressed. Please see the section on Programming Interfaces and
the C examples for more details on using a saved configuration file or
configuration functions.

3. Starts data acquisition. The example starts acquisition when a button is pressed.

4. Reads data. An idle event may be used to run a function that periodically check
for data.

5. Stops acquisition and terminates communication. The example uses a button to
control when acquisition is stopped.

After initialization, an application reads data from the iDSC board using the function
DscBufferGetEx.

LabWindows/CVI calls iDSC board functions through DLL function calls. The
section in this manual on Programming Interfaces describes the DLL functions. Use
the example and the function descriptions as a reference for building your application.
The C examples provided with the iDSC software also provide a useful resource for
building applications in LabWindows/CVI.

Using the iDSC Board with LabWindows/CVI 75

7. Using the iDSC Board with HP VEE

HP VEE is a graphical programming environment for which the iDSC board provides
an ideal signal conditioning and data acquisition front end. HP VEE uses objects and
DLL function calls to acquire the full programmability and power of the iDSC board.

Installing iDSC Board Support for HP VEE

When the iDSC board software is installed, a directory named
IDSC\APPSW\HPVEE32 is created that contains HP VEE support files. Copy this
directory and its contents to a directory named [DSC under the HP VEE installation
directory. The following example displays how to copy the files in a DOS shell:

XCOPY *Lox “C:\PROGRAM FILES\HP VEE 4.0” /S

Note: Replace the directory names with the correct paths for your PC.

Restart HP VEE to enable a new iDSC menu that provides access to iDSC board
functions.

Using the iDSC Board with HP VEE 77

Running the HP VEE iDSC Board Examples

Several examples show how HP VEE interfaces with the iDSC board. The examples
are located in the IDSC directory under the HP VEE install directory. To run the
examples, verify that the iDSC board and iDSC board software are installed and that
DSCview works properly. Exit DSCview before running the HP VEE iDSC board
examples.

APPO01.VEE

APPO@1.VEE shows how to configure the iDSC board to sample two channels and
display the results in a graph. To run the example press the Start! button. To stop the
example press the Stop! button on the worksheet rather than HP VEE’s normal Stop!
button. Pressing the Stop! button on the worksheet allows termination code to execute
before HP VEE stops.

APP02.VEE

APPQ2.VEE is similar to APP@1.VEE but adds disk logging to save the data to a disk
file.

APPO03.VEE

APP®@3.VEE shows how to read the data that were saved in APPQ1.VEE.

APP04.VEE

APPQ4 .VEE is similar to APP@1.VEE but it samples eight channels and displays the
results in a graph.

78 Using the iDSC Board with HP VEE

Creating an iDSC Board Application in HP VEE

A new HP VEE application can be created by modifying one of the examples
described above. The following section provides additional details about how HP
VEE interfaces to the iDSC board.

An iDSC board application performs the following steps:
1. Opens iDSC board handles with the function DscHand1eOpen.
2. Defines the configuration of the board using a dialog box, a saved configuration
file, or iDSC board configuration functions.
3. Starts data acquisition.

The iDSC Init object provides all of these initialization routines in one object. iDSC
Init stores the iDSC board handle in a global variable. An HP VEE application must
be designed so that iDSC Init executes before any other functions that access the
iDSC board.

After initialization, an application reads data from the iDSC board using iDSC Data
object.

HP VEE calls iDSC board functions through the Call Function object which calls
functions stored in the DSCIO.DLL dynamic link library. HP VEE automatically
configures a Call Function for any of the DSCIO.DLL functions. To configure a
Call Function, load and run one of the examples. HP VEE loads a DSCI0. VH file
with definitions for each function. From the Device menu select Math & Functions.
Next, select Compile functions and DSCIO from the dialog box. A complete list of
DSCIO functions appears to the right. Choosing any function in this list creates a
Call function object with the proper inputs and outputs.

Refer to the DSCIO Function Summary in this document for complete descriptions of
the iDSC board functions.

Using the iDSC Board with HP VEE 79

Object Reference

iDSC Init

ey

Select | | dsc
Edit

The iDSC Init object makes it easy to configure and initialize the iDSC board.
Three buttons on the iDSC Init object provide configuration options. A New button
displays the iDSC board configuration dialog box and saves the configuration. A
Select button selects an existing configuration file. An Edit button displays the iDSC
board configuration dialog box used to edit an existing file. At run-time iDSC Init
opens a handle to the iDSC board, downloads the configuration, and starts acquisition.

iDSC Data

The iDSC Data object reads data from the iDSC board. Data values are provided on
eight output pins corresponding to eight channels. If fewer channels are actively being
sampled, the data for those channels appear consecutively on the iDSC Data outputs.
For example if iDSC board inputs 0 and 7 are sampled, the data appear on the first
and second pins of iDSC Data.

iDSC Data reads 200 values from each active channel each time it is called. The
number of values on each read may be changed by editing the object and modifying
the constant named Values.

iDSC Close

The iDSC Close object terminates data acquisition and closes the iDSC board
handle.

80 Using the iDSC Board with HP VEE

8. Using the iDSC Board with MATLAB

The iDSC board support for MATLAB allows a user to communicate with the iDSC
board using the MATLAB programming environment. It integrates the processing
power of an iDSC with the powerful technical computing environment of MATLAB.

MATLAB performs high-level numeric computation and visualization of data sets.
iDSC board support for MATLAB allows acquired and processed data from an iDSC
to be further manipulated under MATLAB to suit the specific requirements of an
application.

The iDSC board support for MATLAB supports MATLAB version 6.0.

Installing iDSC Board Support for MATLAB

When the iDSC board support software is installed, a directory is created that contains
iDSC board support for MATLAB. The default name for this directory path is usually
C:\Program Files\Microstar Laboratories\iDSCdev\APPSW\MatTab.
This discussion assumes that the default location was used.

This directory must be added to the MATLAB search path. The MATLAB search
path is established in the toolbox\Tocal\MATLABRC.M file, located in the directory
where MATLAB is installed. One way to add the directory is to select it as the current
directory at the top of the MATLAB main window. The best way is to add an
addpath command to the STARTUP.M file. If STARTUP.M does not exist, you can
create one with a text editor. MATLABRC.M will run STARTUP.M when a MATLAB
application starts.

Below is a description of adding a search path; for iDSC board software for
MATLAB; to the MATLAB search path.

1) Create STARTUP.M, if it does not already exist, under toolbox\Tocal in the
MATLARB installation directory.

2) Add the following lines to STARTUP . M.
disp(’Adding iDSC board support to MATLAB search path’);

addpath([’C:\Program Files\Microstar Laboratories\’,
*iDSCdev\AppSw\Matlab’], path);

Using the iDSC Board with MATLAB 81

Using an iDSC Board with MATLAB

MATLAB cannot directly call DLL functions in DSCIO, but it can call and execute
DLL MEX functions. The DLL MEX functions provide an interface to the DSCIO
DLL, which is the interface to Accel32 and; iDSC hardware and drivers. The name of
each DLL MEX function is slightly different than the corresponding function in
DSCIO DLL. Also, the usage of some of the functions may vary slightly.

The table below shows the comparison between DLL MEX functions and DSCIO
DLL routines. Please refer to the DLL MEX function reference provided in this
manual for a description of each function.

82

DLL MEX Functions for MATLAB

Handle

dscopen (‘unc_path’)
<code> = dscclose (Handle)
Numbytes = dscavail (Handle)
[data, <retval>] = dschufg
(Handle, Length, <LengthMax,
TimeWait, TimeOut,
BytesMultiple>)

<boolean> = dsccal (Handle)

<boolean> = dsccmdld (Handle)

[<retVal>] = dsccfgrd
(Handle, buffer)

[data, <retval>] = dsccfgwt
(Handle)

<boolean> = dscdialg (Handle)

[FilterType, Sharpness, CoFL,
CoSL, CoFH, CoSH, Attenuation,
<{retval>] = dscfpget

(Handle, FiTtIndex)

Corresponding DSCIO.DLL
Routines

DscHandleOpen
DscHandleClose

DscBufferAvail

DscBufferGetEx

DscCalibrate
DscCommandslLoad

DscConfigurationRead

DscConfigurationWrite

DscFilterDialogShow

DscFilterParametersGet

Using the iDSC Board with MATLAB

[<retVal>] = dscfpset (Handle,
FiltIndex, FiltType, Sharpness,
CutoffFregLow, CutoffSlopelow,
CutoffFreqgHigh,
CutoffSlopeHigh, Attenuation)

[gdlay, <retval>] = dscgdela
(Handle)

[string] = dscerrg

[<retVal>] = dscmaset
(SlaveHandle, MasterHandle)

<mempercent> = dscmemus (Handle)
<count> = dscpecnt (Handle)
<pins> = dscpeget (Handle)
<boolean> = dscpeset (Handle)
{rate> = dscsrget (Handle)

[rate, <retval>] = dscsrset
(Handle, SampleRate)

<boolean> = dscstart (Handle)

<boolean> dscstop (Handle)

<boolean> = dscteset
(Handle, parl, par2, par3)

ret = dsctccnt(Handle)
<{max> = dsctcmax (Handle)
<width> = dsctcwdt (Handle)

[buf, <retval>] = dsctfget
(Handle, FiltIndex, Length)

[buf, <retval>] = dscusget
(Handle, FiltIndex, Length)

Using the iDSC Board with MATLAB

DscFilterParametersSet

DscGroupDelay

DsclLastErrorTextGet

DscMasterSet

DscMemoryUsed
DscPinEnabledCount
DscPinEnabledGet
DscPinkEnabledSet
DscSampleRateGet

DscSampleRateSet

DscStartAcquiring
DscStopAcquiring

DscTcEnabledSet

DscTcEnabledCount
DscTcMaximum
DscTcWidth

DscTransferFunctionGet

DscUnitStepGet

83

84

[<retVal>] = dscdccls (Handle,
"CC Tist’, stack_size)

[<retVal>] = dscdtset
(Handle, dapl text’, stack)

[’unc_path’, <retVal>] =
dscaddrg(dscHandle)

<boolean> = dscaddrs(dscHandle,
“unc_path’)
[scansDiscarded <, boolean>] =
dscdscan(handle)

masterHandle =
dscmaget(slaveHandle)

[numBytes <, boolean>] =
dsclgsiz(handle)

[flags, filename, fileShareMode,
openFlags, fileFlagAttributes,
blockSize, maxCount <, boolean>]

= dsclgcg(handle)

<boolean> = dsclgcs(handle,
"flags’, ’filename’
<[’fileShareMode’, ’openFlags’,
"fileFlagsAttributes’,
blockSize, maxCountl>)

retVal = dsclgqry(handle)

<boolean> = dsclgset(handle,
setState)

retVal dsctccent(dscHandle)

retVal = dscgdlg(grpHandle)

grpHandle = dscgopen

<boolean> dscgclse(grpHandle)

DscDaplCCListSetA

DscDaplTextSetA

DscAddressGet

DscAddressSet

DscScanDiscarded

DscMasterGet

DscServerDiskLogBytes

DscServerDiskLogConfigGet

DscServerDiskLogConfigSet

DscServerDiskLogEnabledGet

DscServerDiskLogEnabledSet

DscTcEnabledCount
DscGroupConfigDialogShow
DscGroupHandleOpen

DscGroupHandleClose

Using the iDSC Board with MATLAB

index = dscgaddl(grpHandle K, DscGroupAddOne
unc_path>)

retVal = dscgcnt(grpHandle) DscGroupCount

<boolean> = dscgdell(grpHandle) DscGroupDeleteOne

Handle = dscgdsc(grpHandle, DscGroupDsc

index)

<retVal> = dscgcfgr(grpHandle, DscGroupConfigRead
buffer)

[data, <retval>] = DscGroupConfighrite
dscgcfgw(grpHandle)

<boolean> = dscxbcal(handle DscXxbCalibrate

<, sampleRate>)

ret = dscxbeg(handle) DscXbEnabledGet
<boolean> = dscxbes(handle, DscXbEnabledSet

isEnabled)

[iType, iRange, i0ffset, DscXbPinConfigGet
i0ffsetRange, oExcitation

<, boolean>] =

dscxbpcg(dscHandle, pinlndex)

<boolean> = dscxbpcs(dscHandle, DscXbPinConfigSet

pinlndex <, iType, iRange,
i0ffset, oExcitation>)

For more information, please refer to the corresponding function in the DSCIO
Reference Manual.

Using the iDSC Board with MATLAB 85

Running the MATLAB iDSC Board Examples

Several example applications are included and demonstrate the use of an iDSC board
with MATLAB. The examples can be run by typing appl, app2, app3 etc. at the
MATLAB command prompt.

APP1.M
Application 1 reads a block of 1000 data values from the iDSC board. Input
channels 0,1,2 etc can be selected using the iDSC dialog window. The values are
merged into a MATLAB matrix. This column matrix has the size [1000,1]. This
application shows how to initialize communication, get data, and terminate
communication with the iDSC board.

APP2.M
Application 2 shows how to read an iDSC configuration block from a file to
configure the parameters of an iDSC board. It also writes modified parameters back
to the original file.

APP3.M
Application 3 shows the usage for many of the functions that modify the parameters
of the iDSC board filters.

APP4.M
Application 4 shows the usage of the calibration function.

APP5.M
Before running this example, the module DAPLIIR.DLM should be installed. Use
the DAP Service under the Control Panel; or use the module-related DLL MEX
functions, such as DapModulelnstall, DapModuleUninstall, DapModuleLoad and
DapModuleUnload, in DAPtools for MATLAB. (Please look at the DAPtools for
MATLAB help for more information on module-related functions.) Application 5
gives an example of how to install a 32-bit module and configure DAPL commands
for onboard processing.

APP6.M
Application 6 shows how to configure input timing channels.

86 Using the iDSC Board with MATLAB

APP7.M

Application 7 provides an example of getting matrix data with the transfer function
and unit step function of an iDSC filter configuration.

APP8.M

Application 8 shows a simple example of using two iDSC boards in the master/slave
configuration.

All the above examples open the handle to an iDSC board, get data from the iDSC
board, and close the handle to the iDSC board. If you want to force a running example
to stop, use CTRL-C to exit the example. When you do this, not all of the M file is
executed and it is possible that the opened iDSC handle will not be closed. The
opened handle should be closed explicitly by dscclose. If that does not work, restart
MATLAB or the DAP service through the Control Panel.

Using the iDSC Board with MATLAB 87

DLL MEX Reference

Most of the returned arguments are message or error codes. These report whether or
not the functions have been executed successfully.

Some functions have optional TimeWait and TimeOut parameters. The parameter
TimeWait is the longest time in milliseconds that the operation can be blocked
waiting for completion. The parameter TimeOut is the longest time in milliseconds
that the operation can take for completion. If it is not completed in that amount of
time, the operation is aborted. When this number is specified, it takes precedence over
TimeWait. If values for these parameters are not given, the default is TimeWait of
100 ms and TimeOut of 20 seconds. These parameters are discussed in more detail in
the DSCIO reference manual.

hDsc = dscopen(‘uncPath’)
This function opens a handle to the communication pipe defined by the UNC
(Universal Naming Convention) path. This function should be the first iDSC
function called in an application. Examples include:

hDsc = dscopen(’unc_path’);
hDsc = dscopen(’\\.\Dap0’);
hDsc = dscopen(’\\TestPC\Dapl’);

The return value in hDsc is a handle to the iDSC board. The value of hDsc is 0 if an
error occurred.

<code> = dscclose(hDsc)
This function closes a handle specified by hDsc and terminates communication with
an iDSC board. The return value code is 1 if the handle was closed successfully or 0
if an error occurred.

code = dscavail(hDsc)
This function returns the number of bytes of data available for reading from an iDSC
board specified by hDsc. For efficient data transfer, it is best to use dscbufg with
a time wait and avoid using this function. The function dscbufg returns the actual
number of bytes read which lets the application know what data have been
transferred. The return value code is -1 if an error occurred.

88 Using the iDSC Board with MATLAB

[data, <code>] = dscbufg(hDsc, Len, <MaxLen, TimeWait, TimeOut,

LenMult>)
This function reads a block of data from an iDSC board specified by hDsc, with two
parameters, TimeWait and TimeOut, to control the transfer behavior. Parameters
Len and MaxLen are the specified minimum and maximum number of bytes returned
to data respectively. Both Len and MaxLen are always a multiple of LenMult. In
most cases, data read from the iDSC is multiplexed: channel0, channell, etc. It is
possible to use standard MATLAB matrix operations to separate the channels. The
return value code is the number of bytes read if the function succeeds, 0 if there is
no data, or -1 if the function fails.

<code> = dsccal(hDsc)
This function performs calibration on an iDSC board specified by hDsc. It calibrates
an iDSC board for DC gain and offset, and saves the calibration values. It is
automatically invoked when dscstart is called for the first time. The saved
calibration values are used until this function is invoked again. If the calibration
values are not found, this function is automatically re-invoked to start calibration on
the iDSC. The return value code is 1 if the function succeeds, or 0 if the function
fails.

<code> = dsccmdld(hDsc)
This function downloads configuration commands from the host computer to an
iDSC board specified by the handle hDsc and performs the necessary configuration
for filtering. This function configures the iDSC board with the appropriate programs
and coefficients.

The filter data are used by the iDSC internally to calculate and download the
appropriate commands. If the iDSC board configuration or filter designs change and
dscstart is executed, dscstart automatically invokes dscemdld and downloads
new commands to the iDSC board. Data will arrive at the PC two times
dscgdela(hDsc) seconds later.

If the iDSC board configuration or filter designs have changed and this function is
executed before dscstart, data will appear immediately on the host computers.
These data are samples that were in the filtering buffers but are no longer needed
there after the filter reconfiguration. The return value code is 1 if the function
succeeds, or 0 if the function fails.

Using the iDSC Board with MATLAB 89

[<code>] = dsccfgrd(hDsc, buffer)
This function transfers iDSC board configuration information from the host
computer to an iDSC specified by the handle hDsc. The iDSC board information,
which is specified by buf fer, includes sample rate, enabled input pins, input pin to
filter mappings, and details of the filter designs. The return value code is the
number of bytes being read from the host computer if the function succeeds, or 0 if
the function fails.

[buffer, <code>] = dsccfgwt(hDsc)
This function returns information about sampling, filtering, and hardware channel
assignments in the buffer array, for the board specified by the handle hDsc. The
return value code is the number of bytes in the buf fer if the function succeeds, or
0 if the function fails.

<code> = dscdialg(hDsc)
This function displays modal dialog screens for graphical filter configuration and
design associated with an iDSC board specified by the handle hDsc. A filter
configuration screen provides a quick method for selecting sample rates, mapping
input pins to selected filter designs, and enabling or disabling input pins. If the
function succeeds, and the OK button is selected, the return value code is 1. If the
OK button is selected without changes, the return value code is 5. If the CANCEL
button is selected, the return value code is 2. If the function fails, the return value is
0.

[filtindex, filtType, shrp, coFL, coSL, coFH, coSH, atten, <code>] =

dscfpget(hDsc, filtindex)
This function gets filter parameters associated with a filter at index fi1tIndex of
an iDSC board specified by the handle hDsc. Parameters fi1tType, shrp, coFL,
coSL, coFH, coSH, and atten specify a filter type, sharpness, cutoff frequency low
and high, and cutoff slope low and high parameters at the beginning of the transition
band. If the filtIndex is notin the range of 0 through 7, the function fails. The
return value code is 1 if the function succeeds, or 0 if the function fails.

<code> = dscfpset(hDsc, filtindex, filtType, shrp, coFL, coSL, coFH,
coSH, atten)
This function sets filter parameters associated with a filter at index filtIndex of
an iDSC board specified by hDsc. Filter parameters can be set graphically in
dscdialg. Parameters fi1tType, shrp, coFL, coSL, coFH, coSH, and atten

90 Using the iDSC Board with MATLAB

specify the filter type, sharpness, cutoff frequency low and high, and cutoff slope
low and high parameters at the beginning of a transition band. Each iDSC board can
store up to 8 filter designs, which can be accessed by the fi1tIndex parameter. If
filtIndex is not in the range of 0 through 7, the function fails. The return value
code is 1 if the function succeeds, or 0 if the function fails.

[gdelay, <code>] = dscgdela(hDsc)
This function returns the group delay (in seconds) through all filter designs. The
group delay is the amount of time to wait before data arrives at the PC.

The return value code is 1 if the function succeeds, or 0 if the function fails.

code = dscerrg
This function retrieves the text of the last error message that occurred in DSCIO
DLL. This is useful in determining if there was an error related to any of the DSCIO
DLL function calls. This function should be called immediately after a function of
interest. If a function call fails, the last error message is updated. The last error
message will stay the same until another function call fails. The return value code is
the text of the last error message from the iDSC board if the function succeeds, or 0
if this function either fails or returns no error message.

<code> = dscmaset(slavehDsc, masterhDsc)
This function connects a Slave iDSC board specified by s1avehDsc to a Master
iDSC board specified by masterhDsc. It is only useful in a Master/Slave
Configuration. The only way to specify an iDSC board as a master or slave is by
invoking this function using two different iDSC board handles. If the same iDSC
board handles are used, the Master and Slave iDSC boards will not be connected.
When this function is completed, the iDSC board specified by sTavehDsc becomes
a Slave iDSC board and the iDSC board specified by masterhDsc becomes a
Master iDSC board. The return value code is 1 if the function succeeds, or 0 if the
function fails.

<code> = dscmemus(hDsc)
This function determines the used memory on an iDSC board specified by the
handle hDsc. It is useful in determining whether or not the iDSC board will be able
to sustain a particular sample rate without overflowing. The return value code is the
amount of memory used, expressed as a percent, if the function succeeds, or 0 if the
function fails.

Using the iDSC Board with MATLAB 91

<code> = dscpecnt(hDsc)
This function returns the number of enabled input pins on an iDSC board specified
by the handle hDsc. Valid values for the enabled input pin count are in a range of
one to eight since at least one input pin must be enabled. The return value code is
the number of enabled input pins if the function succeeds, or 0 if the function fails.

<buffer> = dscpeget(hDsc)
This function gets the enabled input pins on an iDSC board specified by the handle
hDsc as a one-by-eight array of integer. When an input pin is enabled, the
corresponding element in the array is set to one. When an input pin is disabled, the
corresponding element in the array is set to zero. To find out the number of enabled
input pins, use the dscpecnt function. The return value buffer is a one-by eight-
integer array if the function succeeds, or 0 if the function fails since at least one
input pin must be enabled.

<code> = dscpeset(hDsc, pin0, pin1, pin2, pin3, pin4, pin5, pin6, pin7)
This function sets enabled input pins on an iDSC board specified by the handle
hDsc. Set a pin variable to 1 to enable the corresponding pin, or to 0 to disable the
pin. To find out the number of enabled input pins, use dscpecnt function. The
return value code is 1 if the function succeeds, or 0 if the function fails.

The following example enables input pins S1, S3 and S6:
DscPinEnabledSet(hDsc, 0,1,0,1,0,0,1,0);

code = dscsrget(hDsc)
This function gets an effective sampling rate, in units of samples per second, for
each channel on an iDSC board specified by the handle hDsc. The return value
code is the sampling rate if the function succeeds, or 0 if the function fails.

<code> = dscsrset(hDsc, samRate)
This function sets an effective sampling rate, in units of samples per second, for
each channel to samRate on an iDSC board specified by the handle hDsc. Table 1
below displays valid sample rates.

153600
102400 76800
51200 38400
25600 19200 15360

92 Using the iDSC Board with MATLAB

12800 10240 9600 7680

6400 5120 4800 3840
3200 3072 2560 2400 2048 1920
1600 1536 1280 1200 1024 960
800 768 640 600 512 480
400 384 320 300 256 240
200 192 160 150 128 120
100 96 80 75 64 60
50 48 40 32 30
25 24 20 16 15
12 10 8

If an invalid sample rate is selected, the function will automatically select the closest
larger sample rate. The return value code is 1 if the function succeeds, or 0 if the
function fails.

<code> = dscstart(hDsc)
This function starts a data acquisition process on an iDSC board specified by the
handle hDsc, causing data to start appearing on the host computer. This function
internally forces a dsccal if it cannot find saved calibration values and a
dscemdld if the iDSC board configuration or filter designs have changed. If the
iDSC board configuration or filter designs have changed, data will appear
dscgdela(hDsc) seconds later.

Once this function is invoked, dscbufg can be called to read blocks of data into
buffers. The return value code is 1 if the function succeeds, or 0 if the function fails.

<code> = dscstop(hDsc)
This function stops a data acquisition process on an iDSC specified by the handle
hDsc. It is called after dscstart to stop data from appearing on the host computer.
The return value code is 1 if the function succeeds, or 0 if the function fails.
[<code>] = dscteset(hDsc, Tc0, Tcl, TcWidth)

This function enables timing channels on an iDSC board specified by the handle
hDsc. Parameters Tc® and Tcl are for Timing Channel 0 and 1 respectively. A
value of one for one of a pin parameter enables a timing channel, or a value of zero
disables it. Parameter TcWidth is for the width of the timing channel, which can be
either 2 or 4 bytes depending on sampling rate. Setting TcWidth to one forces
timing channel width to be 4 bytes (32 bits) regardless of the sample rate. The return
value code is 1 if the function succeeds, or 0 if the function fails.

Using the iDSC Board with MATLAB 93

The following example is used to enable Timing Channel 1 with 4 bytes for the
timing channel width:

DscTcEnabledSet(hDsc, 0,1,1);

The following example is used to enable Timing Channel 0 and Timing Channel 1
with 4 bytes for the timing channel width:

DscTcEnabledSet(hDsc, 1,1,1);

<code> = dsctcmax(hDsc)
This function returns the maximum value a timing channel can contain based on the
sampling rate associated with an iDSC board specified by the handle hDsc. It ranges
from 128 to 2457600. The return value code is the maximum timing channel value
if the function succeeds, or 0 if the function fails.

[buffer, <code>] = dsctfget(hDsc, filtindex, len)
This function gets the transfer function data points of a filter design used by an
iDSC board specified by the handle hDsc. Parameter fi1tIndex ranges from 0 to 7
since there are up to eight filter designs. The parameter 1en specifies number of
data points in the returned transfter function arrary buf fer. The return value code
is 1 if the function succeeds, or 0 if the function fails.

<code> = dsctcwdt(hDsc)
This function returns the timing channel width in bytes associated with an iDSC
board specified by the handle hDsc, either 2 bytes for 16-bit values or 4 bytes for
32-bit values. Width is dependent on the sample rate. The timing channel width for
sample rates 8 s/s to 600 s/s is always 4 bytes. The timing channel width for sample
rates 640 s/s to 153600 s/s is 2 bytes by default. The timing channel width for these
higher sample rates can be forced to 4 bytes by setting Tcwidth in the dscteset
function. The return value code is the timing channel width if the function succeeds,
or 0 if the function fails.

[buffer, <code>] = dscusget(hDsc, filtindex, <len>)
This function gets the unit step response data points of the filter design used by an
iDSC board specified by the handle hDsc. Parameter fi1tIndex ranges from 0 to 7
since there are up to eight filter designs. Optional parameter 1en is the number of
data points that should be returned in buf fer. The return value code is 1 if the
function succeeds, or 0 if the function fails.

94 Using the iDSC Board with MATLAB

<code> = dscdtset(hDsc, 'daplTxt')
Defines DAPL commands in text format for an iDSC board specified by the handle
hDsc. The DAPL commands are defined by parameter dap1Txt, which will be sent
to the iDSC when dscemdld or dscstart is invoked. Each line of the DAPL
commands must be delimited by a carriage-return, line-feed, or both. The return
value code is 1 if the function succeeds, or 0 if the function fails.

<code> = dscdccls(hDsc, 'custCmdTxt’, stacksize)
Defines a list of DAPL custom commands and sends the commands to an iDSC
board specified by the handle hDsc when dscemdld or dscstart is invoked. A
custom command list is defined by parameter custCmdTxt. Each custom command
in the list must be delimited by a carriage-return by putting integer 13. Parameter
stacksize is a matrix that defines the stack size for each command in the list. The
return value code is 1 if the function succeeds, or 0 if the function fails.

This function is used with obsolete 16-bit custom commands only. For downloading
a 32-bit custom command module, please use Control Panel->Data Acquisition
Processor, or dapmdin in DAPtools for MATLAB.

[unc_path, <code>] = dscaddrg(hDsc)
This function gets a UNC path associated with an iDSC board specified by the
handle hDsc. The return argument unc_path is a UNC string consisting of a
machine name and an iDSC board name. The return value code is the length of
unc_path if the function succeeds, or -1 if the function fails.

<code> = dscaddrs(hDsc, ‘uncPath’)
This function changes the address, specified by uncPath, to an iDSC board
specified by hDsc. The return value code is 1 if the function succeeds, or O if the
function fails.

[numData, <code>] = dscdscan(hDsc)
This function returns the number of scans thrown away since dscemdld. Each scan
consists of one sample for each of the active input pins. For example, if there are
two enabled input pins, a scan consists of two samples. The scan value is used to
synchronizing multiple iDSC boards. Since dscstart is a software command, the
iDSC boards receive it at different times, which means the number of scans per
iDSC board is different when the START command is received. Since iDSC boards
must be synchronized, the same number of scans per iDSC board between
dsccmdld and dscstart have to be ignored. The returned scan will be stored in

Using the iDSC Board with MATLAB 95

numData. The return value code is 1 if the function succeeds, or 0 if the function
fails.

code = dscmaget(slavehDsc)
This function gets the handle to a master iDSC board when invoked on a slave iDSC
board specified by s1avehDsc. It is only useful in a Master/Slave Configuration.
This function fails when invoked on a master or normal iDSC handle. The return
value code is a handle to a master iDSC board if the function succeeds, or 0 if the
function fails.

[numBytes <, code>] = dsclgsiz(hDsc)
This function gets the number of bytes logged to a disk server from an iDSC board
specified by the handle hDsc. It should be called after the function dscstart is
invoked, and when dsclgqry returns ‘1°. The return value code is 1 if the function
succeeds, or 0 if the function fails.

[flags, filename, fileShareMode, openFlags, fileFlagAttributes, blockSize,
maxCount <, code>] = dsclgcg(hDsc)
This function gets a server disk log configuration associated with the iDSC board
specified by the handle hDsc. Below is a brief description of the returned
parameters:
flags — logging behavior
filename —name of disk log file
fileShareMode - file share mode of the disk log file
openFlags — file open options of the disk log file
fileFlagsAttributes — file attributes of the disk log file
blockSize — minimum amount of data, in bytes, to write to the
disk log file at one time
maxCount —maximum number of bytes to log. The default is 0,
which causes logging to continue indefinitely until
dscstop is invoked
The return value code is 1 if the function succeeds, or 0 if the function fails. For
more information, please look at TServerDiskLogConfig in the DSCIO reference
manual.

96 Using the iDSC Board with MATLAB

<code> = dsclgcs(hDsc, ‘flags’, ‘filename’, <[fileShareMode’,
‘openFlags’, ‘fileFlagsAttributes’, blockSize, maxCount]>)
This function sets a server disk log configuration associated with the iDSC board
specified by hDsc. Below is a brief descriptions of return parameters:
flags — logging behavior
filename —name of disk log file
fileShareMode - file share mode of the disk log file
openfFlags — file open options of the disk log file
fileFlagsAttributes - file attributes of the disk log file
blocksize — minimum amount of data, in bytes, to write to the disk
log file at one time
maxCount — maximum number of bytes to log. The default is 0, which
causes logging to continue indefinitely until dscstop is
invoked
The return value code is 1 if the function succeeds, or 0 if the function fails. For
more information, please look at TServerDiskLogConfig in the DSCIO reference
manual.

code = dsclgqry(hDsc)
This function queries the specified server, associated with an iDSC board specified
by the handle hDsc, to determine whether disk logging is enabled. The return value
code is 1 if the function succeeds, or 0 if the function fails.

<code> = dsclgset(hDsc, setState)
This function changes the state of the specified server, associated with an iDSC
board specified by the handle hDsc. Setting the parameter setState to one or zero
enables and disables server disk logging, respectively. The return value code is 1 if
the function succeeds, or 0 if the function fails.

code = dsctccnt(hDsc)
This function returns the number of enabled timing channels associated with an
iDSC board specified by hDsc. The return value code is the number of enabled
timing channels if the function succeeds, or -1 if the function fails.

code = dscgdlg(grpHDsc)
This function displays modal dialog screens for the graphical configuration of
multiple iDSC boards. The modal dialog screen from dscdialg is for one iDSC
only. This function should be used to configure more than one iDSC board. It
simplifies the configuration of multiple iDSC boards with a graphical interface. The

Using the iDSC Board with MATLAB 97

return value code is 1 if the OK button has been clicked, 2 if the cancel button has
been clicked, and 0 if the function fails.

code = dscgopen
This function opens a handle to an iDSC group. Similar to dscopen, this function is
the first function called by an application ready to begin communication with the
iDSC group. Once the iDSC group communication has begun, a specific iDSC
board can be accessed through dscgdsc. The return value code is a handle to a
group of iDSC boards if the function succeeds, or 0 if the function fails.

<boolean> = dscgclse(grpHDsc)
This function terminates communication and releases an iDSC group handle
specified by grpHDsc previously opened with dscopen. It should be the last
function called by an application to end communication with the iDSC group. Once
the communication has ended, an iDSC board cannot be accessed through
dscgdsc. The return value code is 1 if the function succeeds, or 0 if the function
fails.

code = dscgadd1(grpHDsc <, ‘unc_path’>)
This function adds one iDSC to the tail of the iDSC group specified by grpHDsc. It
provides an option to set the address of an iDSC. The return value code is an index
of the newly added iDSC board if the function succeeds, or -1 if the function fails.
The maximum capacity of an iDSC group handle is 64, which means the maximum
index is 63.

code = dscgcnt(grpHDsc)
This function returns the number of iDSC boards in an iDSC group specified by
grpHDsc. The count is increased by one when dscgadd1 is invoked, and
decreased by one when dscgdeld is invoked. The return value code is the number
of iDSC boards in the group if the function succeeds, or -1 if the function fails.

<code> = dscgdel1(grpHDsc)
This function deletes one iDSC board from the tail of the iDSC group specified by
grpHDsc. The iDSC board with highest index always is deleted first. The return
value code is 1 if the function succeeds, or 0 if the function fails.

98 Using the iDSC Board with MATLAB

code = dscgdsc(grpHDsc, iDscindex)
This function accesses an iDSC board at index iDscIndex of an iDSC group
specified by a group handle grpHDsc. Valid iDSC board indices are 0 through
dscgcent — 1. The individual iDSC board handle should not be stored because it is
destroyed and recreated in functions like dscgdlg, dscgdel1, dscgadd1, etc. It
should be called whenever accessing a specific iDSC board. The return value code
is a handle to the target iDSC board if the function succeeds, or 0 if the function
fails.

<code> = dscgcfgr(grpHDsc, buffer)
This function transfers configuration information in binary format from a host
computer to an iDSC group specified by the group handle grpHDsc. iDSC group
information includes the number of iDSC boards, address, mode, sample rate, input
range, input pin to filter mappings, enabled input pin information, and details of
filter designs. The return value code is the number of bytes read if the function
succeeds, or 0 if the function fails.

[buffer <, code>] = dscgcfgw(grpHDsc)
This function transfers configuration information from an iDSC group specified by
the group handle grpHDsc to the host computer. iDSC group information written
includes the number of iDSC boards, address, mode, sample rate, input range, input
pin to filter mappings, enabled input pin information, and details of the filter
designs. The return value code is the number of bytes written if the function
succeeds, or 0 if the function fails.

<code> = dscxbcal(hDsc <, sampleRate>)
This function performs calibration on an expansion board, part number MSXB042,
associated with an iDSC board specified by the handle hDsc. This function works
only if the board’s enable flag is on, which can be queried by calling dscxbeg. If
dscxbeg returns false, a failure has occurred. The sample rate should not exceed
1024 samples per second or the calibration values may be unstable. A higher sample
rate allows this function to execute faster but the calibration values are less accurate.
A lower sample rate executes more slowly but the calibration values are more
accurate. The default and recommended value of 100 samples per second works
well. The return value code is 1 if the function succeeds, or 0 if the function fails.

Using the iDSC Board with MATLAB 99

<code = dscxbeg(hDsc)
This function gets the state of an MSXB042 expansion board associated with an
iDSC board specified by the handle hDsc. The return value code is 1 for enabled
and 0 for disabled if function succeeds, or -1 if the function fails.

<code = dscxbes(hDsc, isEnabled)
This function sets the state of an MSXB042 expansion board associated with an
iDSC board specified by the handle hDsc. Setting isEnabled to 1 enables the
board and makes it visible in dscdialg, whereas setting isEnabled to 0 disables
the board and makes it invisible in dscdialg. The return value code is 1 if function
succeeds, or 0 if the function fails.

[iType, iRange, iOffset, iOffsetRange, oExcitation <,code>] =

dscxbpcg(hDsc, pindex)
This function gets a pin configuration at index pIndex of an MSXB042 expansion
board associated with an iDSC board specified by the handle hDsc. Parameters
iType, iRange, i0ffset, i0ffsetRange, and oExcitation specify an input
type, input range, input offset, input offset range, and an output excitation. The
return value code is 1 if the function succeeds, or 0 if the function fails. For more
information, please see DscXbPinConfigGet and TXbPinConfig in the DSCIO
Reference Manual.

<code> = dscxbpcs(hDsc, pindex <, iType, iRange, iOffset, oExcitation>)
This function sets a pin configuration at index pIndex of an MSXB042 expansion
board associated with an iDSC board specified by the handle hDsc. Parameters
iType, iRange, i0ffset, i0ffsetRange, and oExcitation specify an input
type, input range, input offset, input offset range, and an output excitation. The
return value code is 1 if the function succeeds, or 0 if the function fails. For more
information, please see DscXbPinConfigSet and TXbPinConfig in the DSCIO
Reference Manual.

100 Using the iDSC Board with MATLAB

Section lll. Programming Interfaces

Section Ill. Programming Interfaces 101

9. DSCIO DLL Programmer’s Interface

The Digital Signal Conditioning Input Output (DSCIO) Dynamic Link Library
Programmer’s Interface provides the link between an application and the iDSC board.

The DSCIO interface supports the Visual C++, Visual Basic, Delphi, and C++Builder
32-bit development environments, and the DASYLab, LabVIEW, LabWindows/CVI,
HP VEE, and MATLAB 32-bit applications.

An application opens a handle to the iDSC board and then uses the handle to
configure the system and receive data. An opened handle is reserved for access by the
application exclusively until the application closes the handle. A handle is a 32-bit
value that references the iDSC board.

To open a handle to the iDSC board, use the function DscHandleOpen.
DscHand1eOpen requires a single parameter, pszAddress, which is the name of the
iDSC board expressed using the Universal Naming Convention (The Universal
Naming Convention is discussed later in this chapter).

To close a handle to the iDSC board, use the function DscHandleClose.
DscHandleClose requires a single parameter, hDsc, the handle previously opened
with DscHand1eOpen.

The DSCIO Function Summary at the end of this chapter provides a summary of all of
the supported functions.

DSCIO DLL Programmer’s Interface 103

DSCIO Interface Examples

There are several examples located in the <InstallDir>\Examples\VB directory
for Visual Basic and the <InstallDir>\Examples\C directory for C/C++ which
demonstrate the use of the DSCIO interface. Before running the examples, verify that
the iDSC board and iDSC board software are properly installed by running DSCview.
Exit DSCview before running the DSCIO interface examples.

Visual Basic Examples

Dvm.vbp

Dvm.vbp shows how to display voltage measurements. It transfers blocks of data from
the iDSC board into a data buffer. It displays the 1st index from the data buffer,
assuming a 5V input signal.

BinLog.vbp

BinLog.vbp shows how to log binary data to disk. It allows the user to design filters
and configure the iDSC board using the DscConfigDialogShow function. When the
iDSC board is started, the selected disk log file is opened and data logging starts.
When the iDSC board is stopped, the selected disk log file is closed and data logging
stops.

LoadSave.vbp

LoadSave.vbp shows how to load and save the iDSC board configuration from and
to a file. It displays a previously saved configuration using the
DscConfigDialogShow function.

C/C++ Console Examples

BinLog.cpp

BinlLog.cpp shows how to log binary data to disk. It allows the user to design filters
and configure the iDSC board using the DscConfigDialogShow function.

104 DSCIO DLL Programmer’s Interface

TxtLog.cpp

TxtLog.cpp shows how to log text data to disk. It allows the user to design filters
and configure the iDSC board using the DscConfigDialogShow function.

LoadSave.cpp
LoadSave.cpp shows how to load and save the iDSC board configuration from and

to a file. It displays a previously saved configuration using the
DscConfigDialogShow function.

DSCIO DLL Programmer’s Interface 105

Creating a DSCIO Interface Application

Before you create a DSCIO Interface application, make sure that you have installed
the Accel32/DAPcell server. The DAPIO32.DLL that is shipped with the
Accel32/DAPcell server is needed for any application that uses the DSCIO Interface.

The following steps describe the functions required for creating a simple application
with the DSCIO interface.

1) Open a handle to the iDSC board using DscHand1eOpen.

2) Configure the iDSC board by invoking the DscConfigDialogShow
function. This allows the user to set the sample rate, enable/disable
channels, design filters, etc.

3) Start data acquisition by invoking the DscStartAcquiring function.

4) Get binary data from the iDSC board by invoking the DscBufferGetEx
function.

5) Stop data acquisition by invoking the DscStopAcquiring function.

6) Close the handle to the iDSC board using DscHandTeClose.

When programming in C/C++, include the header file Dscio.h that is located in
<InstallDir>\D11\Import\C. If you are using a Microsoft C/C++ compiler, you
must link with the Dscio.1ib located in <InstallDir>\D1T\Lib\MC. If you are
using a Borland C/C++ compiler, you must link with the Dscio.1ib located in
{InstallDir>\DT1T\Lib\BC.

When programming in Visual Basic, include the header file Dscio.bas that is
located in <InstallDir>\D11\Import\VB.

When programming in Pascal, include the header file Dscio.pas that is located in
<InstallDir>\D11\Import\Pascal.

More complicated applications that use DAPL text and DAPL custom commands are
also available with the DSCIO interface.

106 DSCIO DLL Programmer’s Interface

Universal Naming Convention

DSCIO addresses the iDSC board using the Universal Naming Convention (UNC). A
UNC name consists of two parts, the machine name and the iDSC board name. A
UNC name begins with two backslashes, and the parts of the name are separated by a
single backslash as shown below.

\\<Machine name>\<iDSC board name>

A local machine is denoted by a period. A remote machine is represented by its unique
network machine name. Only the DAPcell implementation of the iDSC board supports
remote machine names. All other implementations support only local machine names.

iDSC board names are predefined as Dap@, Dapl, ..., Dap(N-1) where N is the
number of iDSC boards installed on the system. The maximum value for N is 14.

The UNC name is used with the DSCIO interface functions, DscAddressGet and
DscAddressSet. For \\.\Dap®, \\. denotes the name of the local machine and
\Dap® denotes the name of the iDSC board. If connected through DAPcell to a
remote machine named PC45 that contains Dap@, then pszAddress is
\\PC45\Dap0.

DSCIO DLL Programmer’s Interface 107

Master/Slave Configuration

To synchronize multiple iDSC boards on a system, a user must designate one iDSC
board as the master unit and the other iDSC boards as slave units. The configuration
for master and slave must be done in hardware by using a special cable, and in
software by calling the DscMasterSet function.

Synchronous iDSC boards must share the same sampling clock; therefore, a special
cable is necessary to distribute the sampling clock. The Synchronization Connector
used in Master\Slave Configurations is described in the Hardware Architecture
chapters of this document.

Apart from connecting the cable, one iDSC board must be configured as the Master
iDSC board by using the DscMasterSet function. The DscMasterSet function
associates a slave iDSC board to a master iDSC board.

The following functions support Master/Slave Configurations.

DscMasterGet
DscMasterSet
DscOperateModeGet
DscOperateModeSet
DscRemoteMasterGet
DscRemoteMasterSet
DscSlaveCount
DscSlaveHandle

The master unit and slave units must use the same effective sample rate. Therefore,
the sample rate should only be changed on the Master iDSC board using
DscSampleRateSet. Changing the sample rate on the Slave iDSC board will have
no effect. The Slave iDSC board will continue using the sample rate of its master.

If two independent iDSC boards are running at different sample rates, and the user
decides to set up the iDSC boards in a Master/Slave configuration, the Slave iDSC
board will use the sample rate of the Master iDSC board.

In a Master/Slave Configuration, the system services listed below should only be
invoked on the Master iDSC board. If these functions are invoked on the Slave iDSC
board, an error will occur and the functions will return zero.

DscCalibrate
DscCommandsLoad
DscStartAcquiring

108 DSCIO DLL Programmer’s Interface

DscStopAcquiring
DscXbCalibrate

The memory streaming functions DscConfigWrite, DscConfigWriteSize, and
DscConfigRead manage iDSC board information to and from memory. The iDSC
board information includes the sample rate, enabled input pins, input pin to filter
mappings, and the details of all of the filter designs. However the iDSC board
information does not include Master/Slave Configuration information related to
DscMasterSet. Because the functions do not store Master/Slave Configuration
information, a user must store this information explicitly.

DscGroupConfigDialogShow allows easy graphical configuration of masters and
slaves.

DSCIO DLL Programmer’s Interface 109

DAPL Support

Writing DAPL

The DSC system writes the filtered data to pipe pDscData for use in DAPL. Pipe
pDscData has interleaved data only from the enabled channels. Before the user can
perform further processing on the data, the SEPARATE command is recommended for
separating the data from pipe pDscData into the correct number of pipes. If the user
only has five channels enabled out of the maximum of eight, the user should separate
the interleaved data into five pipes. Once the user has completed processing the data,
the results must be merged to $BINQUT.

The restricted DAPL interface requires that input and output procedures, and START
and STOP commands, not be included in the DAPL listing. The iDSC can only be
started and stopped using the DscStartAcquiring and DscStopAcquiring
functions.

The example below shows the form of the first few lines in DAPL. Pipe pDscData
has interleaved data from five enabled channels.

PIPES PO, P1, P2, P3, P4

PDEF A
SEPARATE(pDscData, PO, P1, P2, P3, P4)

...(further processing)

...(must write output to $BINOUT)
END

PO, P1, P2, P3, P4 are the number of enabled channels, which is five in this example.

Using the DAPL Interface

To write custom DAPL text, the user should use DscDap1TextSet. Once the DAPL
text has been defined for the iDSC using DscDap1TextSet, the DAPL text will be
sent to the iDSC when the user invokes DscCommandsLoad or DscStartAcquiring

110 DSCIO DLL Programmer’s Interface

If the user wants to change the already defined DAPL text, DscDap1TextSet must be
reinvoked with the new DAPL text followed by either a DscCommandsLoad or
DscStartAcquiring to activate the new DAPL text.

If the user wants to retrieve the defined DAPL text, DscDap1TextLengthGet along
with DscDap1TextGet should be used.

Below is a C/C++ example:

HDSC hDsc;
hDsc = DscHandleOpen(

"\\\\.\\Dap0"); // Open iDSC handle.
DscDaplTextSet(hDsc, // Define DAPL text.

"PIPES PO, P1, P2, P3, P4\r\n"

"PIPES R@, RI1, RZ, R3, R4\r\n"

"PDEF A\ri\n"

" SEPARATE(pDscData, P@, P1l, P2, P3, P4)\r\n"

" FFT(5, 9, 4, PO, R@)\r\n"

" FFT(5, 9, 4, P1, RI)\r\n"

" FFT(5, 9, 4, P2, R2)\r\n"

" FFT(5, 9, 4, P3, R3)\r\n"

" FFT(5, 9, 4, P4, R4)\r\n"

" MERGE(R@, RI1, RZ2, R3, R4, $BINOUT)\r\n"

" END\r\n");
DscStartAcquiring(hDsc); // Send DAPL text.
//... (other function calls)

DSCIO DLL Programmer’s Interface 111

Structure Summary

Structures are used to pass information to and from many DSCIO functions.
Applications must initialize all fields before passing structures to DSCIO functions.

To use the supported structures, the memories of the structures must first be fully
initialized to zero. This memory initialization is necessary because different versions
of the DSCIO interface may have different size structures. Therefore it is important to
use DscStructPrepare for proper initialization.

The following structures are discussed in detail on the following pages.

TBufferGetEx
TDsclolnté4
TFilterParam
TProcSystemErrorStdcall
TServerDiskLogConfig
TXbPinConfig

112 DSCIO DLL Programmer’s Interface

TBufferGetEx

The TBufferGetEx structure defines the behavior of DscBufferGetEx.

typedef struct tag_TBufferGetEx {

int 7/ InfoSize; /I Size of this structure.
int iMinBytes; /I Minimum number of bytes to get.
int iMaxBytes; /I Maximum number of bytes to get.
int 1 TimelWait; /I Longest time to wait for data.
int 7 77mel0ut; /I Longest total time for operation.
int i1BytesMultiple; /I Bytes to get is a multiple of this.
} TBufferGetEXx;

Members

iInfoSize

Size of this information structure.

iMinBytes
Minimum number of bytes to get. It can be zero or any positive integer.

iMaxBytes
Maximum number of bytes to get. 7MaxBytes must be greater than or equal to
iMinBytes.

iTimeWait
Longest time in milliseconds that the get operation can be blocked waiting for
data. If no data shows up in that amount of time, the operation should be aborted.

iTimeOut
Longest time in milliseconds that the get operation should complete. If it fails to
complete in that amount of time, the operation is aborted. When this member is
specified, it takes precedence over 777mel/ait. This member is ignored if its
value is zero.

iBytesMultiple
The number of bytes to get is always a multiple of iBytesMultiple.

Remarks
TBufferGetEx isused in DscBufferGetEx. TBufferGetEx should be initialized
using DscStructPrepare or DscBufferGetEx will fail.

DSCIO DLL Programmer’s Interface 113

Each member of TBufferGetEx must be initialized to the appropriate value before
being passed to DscBufferGetEx. The member iM7nBytes must be greater than
or equal to zero, and the member 7MaxBytes must be greater than or equal to
iMinBytes.If iMinBytes is zero DscBufferGetEx will never block even when
there are no data available.

A zero value of 7BytesMultiple is treated the same as one. The value of
iBytesMultiple cannot be larger than the maximum pipe buffer size on the PC
side (converted to bytes) minus 1024, or minus the iDSC side blocking size
(converted to bytes), whichever is larger; otherwise, the first condition causes an
error. The second condition is not checked and may cause a deadlock. It is the
application's responsibility to guarantee that it never happens.

Both iMinBytes and iMaxBytes must be an integral multiple of the
iBytesMultiple value; otherwise, an error occurs.

See Also
DscBufferGetEx, DscStructPrepare

114 DSCIO DLL Programmer’s Interface

TDscloint64

The TDscIoInt64 structure defines the behavior of the DscServerDiskLogBytes
function and the 764MaxCount parameter of TServerDiskLogConfig.
TDscIoInt64 represents a 64-bit integer type.

#ifdef M_DscloNolInt64
typedef struct tag_TDscloInt64 {

unsigned long dwlowPart; /I Low 32-bits of 64-bit integer type.
unsigned long dwHighPart; /I High 32-bits of 64-bit integer type.
} TDsclolInt64;
#else
typedef __int64 TDscloInt64;
#endif
Example

The following examples show how to initialize the 764MaxCount parameter of
TServerDiskLogConfig to a value of 4294967296. The first example is for
environments that support the __int64 data type while the second example is for
environments that do not support the __int64 data type.

// Example 1: __int64 type is supported
#finclude <dscio.h>

TServerDiskLogConfig sdlc;
DscStructPrepare(&sdlc, sizeof(sdlc));
sdlc.i64MaxCount = 4294967296;

// Example 2: __int64 type is not supported

ffdefine M_DscloNoInt64 1
#include <dscio.h>

TServerDiskLogConfig sdlc;
DscStructPrepare(&sdlc, sizeof(sdlc));

DSCIO DLL Programmer’s Interface 115

sdlc.i64MaxCount.dwLowPart = 0;
sdlc.i64MaxCount.dwHighPart = 1;

See Also
TServerDiskLogConfig, DscServerDiskLogBytes

116 DSCIO DLL Programmer’s Interface

TFilterParam

The TFilterParam structure defines the behavior of DscFilterParametersGet
and DscFilterParametersSet. The defaults for the members depend on the
sample rate.

typedef struct tag_TFilterParam {

int 7 InfoSize; /I Size of this structure.

char achName[64]; /I Filter name.
intifilterType; /I Filter type.

int 7Sharpness; /I Filter sharpness.

float fCutofffreglow; /I Filter low cutoff frequency.
float fCutoffSlopelow; /I Filter low cutoff slope.
float fCutofffregHigh; /I Filter high cutoff frequency.
float fCutoffSlopeHigh; /I Filter high cutoff slope.
float fAttenuation; /I Filter attenuation.

} TFilterParam;

Members
iInfoSize
Size of this information structure.

achName
Name of the filter. The name is restricted to 63 characters plus one null-
terminated character. The default is FD0, FD1, FD2, FD3, FD4, FD5, FD6, and FD7
for each of the eight filters.

iFilterType
Type of the filter, either lowpass or bandpass. These constants simplify selecting
the filter type: Dsc_LowPass, Dsc_BandPass. The default is lowpass.

iSharpness
Sharpness of the filter specified as an odd number. Valid numbers are in the range
37 to 255, depending on the sample rate.

The default is 37 for sample rate 153600 s/s, 119 for sample rate 102400 s/s, 95
for sample rate 76800 s/s, 195 for sample rates of 51200 s/s, 10240 s/s, 2048 s/s,
and 1024 s/s and 137 for all other sample rates.

fCutofffreqlow
Low cutoff frequency of the filter specified in Hertz. Valid numbers are in the
range 2% to 80% of the Nyquist frequency (0.02 * Nyquist frequency to 0.8 *

DSCIO DLL Programmer’s Interface 117

Nyquist frequency). The Nyquist frequency is half the sample rate. The default is
half the Nyquist frequency.

fCutoffSlopelow

Low cutoff slope of the filter specified as a fraction of the Nyquist frequency,
with the Nyquist frequency normalized to 1.0. Valid numbers are in the range 0.0
to 0.8. 0.0 corresponds to 0% of the Nyquist frequency and 0.8 corresponds to
80% of the Nyquist frequency. The Nyquist frequency is half the sample rate.

The default is 0.0 for sample rates of 153600 s/s, 102400 s/s, 51200 s/s, 10240
s/s, 2048 s/s, and 1024 s/s and 0.04 for all other sample rates.

fCutoffFregHigh

High cutoff frequency of the filter specified in Hertz. Valid numbers are in the
range 2% to 80% of the Nyquist frequency (0.02 * Nyquist frequency to 0.8 *
Nyquist frequency). The Nyquist frequency is half the sample rate. The default is
three-quarters the Nyquist frequency.

fCutoffSlopeHigh

High cutoff slope of the filter specified as a fraction of the Nyquist frequency,
with the Nyquist frequency normalized to 1.0. Valid numbers are in the range 0.0
to 0.8. 0.0 corresponds to 0% of the Nyquist frequency and 0.8 corresponds to
80% of the Nyquist frequency. The Nyquist frequency is half the sample rate.

The default is 0.0 for sample rates of 153600 s/s, 102400 s/s, 51200 s/s, 10240
s/s, 2048 s/s, and 1024 s/s and 0.04 for all other sample rates.

fAttenuation

Attenuation of the filter in the stopband region. Valid numbers are in the range
6.0 to 12.0. The larger the number, the more attenuation in the stopband, but this
will further attenuate the frequencies near cutoff.

The default is 10.2 for sample rate 153600 s/s, 9.4 for sample rate 76800 s/s, 9.8
for sample rates of 102400 s/s, 51200 s/s, 10240 s/s, 2048 s/s, and 1024 s/s and
9.0 for all other sample rates.

Remarks
TFilterParamisused in DscFilterParametersGet and
DscFilterParametersSet. TFilterParam should be initialized using
DscStructPrepare or both functions will fail.

DscFilterParametersGet will return the filter parameters in the achName,
iFilterType, iSharpness, fCutoffFreqlLow, fCutoffSiopelow,
fCutoffFreqHigh, fCutoffSlopeHigh, and fAttenuation members.

118

DSCIO DLL Programmer’s Interface

Before invoking DscFilterParametersSet, the achName, iFilterType,
iSharpness, fCutoffFreqlLow, fCutoffSlopelow, fCutoffFreqHigh,

fCutoffSlopeHigh,and fAttenuation members must be set to the new desired
values.

See Also

DscFilterParametersGet, DscFilterParametersSet, DscStructPrepare

DSCIO DLL Programmer’s Interface 119

TProcSystemErrorStdcall

The TProcSystemErrorStdcall structure defines the behavior of the
DscOnSystemErrorSet function.

typedef void_stdcallTProcSystemErrorStdcall(
void *pinfo, /I Pointer to additional information.
HDSC hDsc, /I iDSC board handle.
const char *sError /I Error from the iDSC board.

)

Members
pInfo
A pointer to additional information to satisfy type calling conventions.

hDsc
Handle of the iDSC board.

Skrror
The error returned from the iDSC board.

Remarks
TProcSystemErrorStdcall supports DscOnSystemErrorSet. The parameter,
sError, displays an error message when a system error occurs. The user can use the
sError parameter to display the error message in an error handling routine.

The DscOnSystemErrorSet function runs when the DscSystemErrorProcess
function is invoked. DscSystemErrorProcess is automatically invoked during
DscBufferGetEx if there are errors from the iDSC. The user can also call
DscSystemErrorProcess and invoke DscOnSystemErrorSet if errors from the
iDSC are suspected.

See Also
DscOnSystemErrorSet, DscSystemErrorProcess

120 DSCIO DLL Programmer’s Interface

TServerDiskLogConfig

The TServerDiskLogConfig structure defines the behavior
DscServerDiskLogConfigGet and DscServerDiskLogConfigSet.

typedef struct tag_TServerDiskLogConfig {

int 7 InfoSize; /I Size of this structure.
unsigned long dwfT1ags; /I Logging behavior flags.
char *pszFfileName; /I File name.
unsigned long dwfileNameSize; /I Size of file name.
unsigned long dwfileShareMode; /I File share properties.
unsigned long dwOpenFlags; /I File open options.
unsigned long dwfileflagsAttributes; [File attributes.
unsigned long dwBJockSize; /I Size of block to write.
TDsclolInt64 764MaxCount; /I File maximum count.
} TServerDiskLogConfig;

Members

iInfoSize

Size of this information structure.

dwFlags
Flags to control disk logging behavior. The constants below simplify selecting
dwFlags. The defaultis DscD1fServerSide and DscDIfFlushBefore.

DscD1fServerSide
Log on the same side of the network connection as the iDSC. If not
specified, logging will take place on the application (client) side of the
network connection.

DscDIfFlushBefore
Flush the input data pipe before beginning the logging session. Default
action is to not flush the pipes before logging.

DscDIfFlushAfter
Flush the input pipe after the logging session has terminated. Default
action is to not flush the pipes after logging.

DscDI1fMirrorlLog
Enable mirror logging. Mirror logging creates a copy of the logged data
in another file.

DSCIO DLL Programmer’s Interface

of

121

DscD1fAppendData
Allow new data to be appended to an existing file. Only the
DscOfOpenAlways and DscOfOpenExisting flags of the dwOpenfilags
member can be used for appending.

DscD1fBlockTransfer
Open the file with no intermediate buffering or caching and access the file
in a special way that is highly dependent on the target disk attributes to
improve performance. This transfer mode adds overhead to slow rate
transfer with small buffers. It should only be used when necessary with a
very large dwBTockS7ze value (such as 1048576 and above). If this
option is selected, dwBTockS17ze is automatically set to 1048576.

pszFileName

Name of the primary disk log file and name of a possible mirror disk log file, if
mirror logging is enabled. The default is an empty string. The size of the user
allocated buffer must be specified using dwf 7 7eNameSize when used with
DscServerDiskLogConfigGet.

Mirror logging is enabled by selecting the DscD1fMirrorlLog flag of the
dwF1ags member. Multiple file names are separated by semi-colons. Currently,
only one mirror file is allowed. Both files must be on the same side of the
DAPcell Local/DAPcell service (the PC application side or the iDSC side).

dwFileNameSize

Size of the user allocated buffer to store the file name specified by
pszFileName. The size must include an extra space for the null terminator. This
field is important in DscServerDiskLogConfigGet. It is not used in
DscServerDiskLogConfigSet.

If dwFileNameSizeis 0, the file name is not returned in pszFileName. If
dwFileNameSizeis 1, only the null terminator is returned in pszF7TeName.

dwfFileShareMode

File share mode of the disk log file. The constants below simplify selecting
dwFileShareMode. The default is DscFsmRead.

DscFsmNone The file cannot be used by another process.
DscFsmRead The file can be read by another process.
DscFsmhrite The file can be written to by another process.

DscFsmReadWrite The file can be read and written to by another process.

dwOpenflags

122

File open options of the disk log file. The constants below simplify selecting

dwOpenflags. The defaultis DscOfCreateAlways.

DSCIO DLL Programmer’s Interface

DscOfCreateNew Create a new file. Creation fails if the file
already exists.

DscOfCreateAlways Create a new file. If the file already exists, it
is overwritten.

DscOfOpenAlways Open an existing file. If the file does not exist,
it will be created.

DscOfOpenExisting Open an existing file without resetting
permissions. Opening fails if the file does
not exist.

dwFileFlagsAttributes
File attributes of the disk log file. The constants below simplify selecting
dwFileFlagsAttributes. The defaultis DscFfaAttributeNormal.

DscFfaAttributeNormal No special attributes.
DscFfaAttributeEncrypted The data in the file is encrypted.
DscFfaFlagWriteThrough Write through any intermediate caching
and go directly to disk.
DscFfaFlagSequentialScan Can be used to optimize the transfer of

large blocks of data. Most applications
will not need this flag.

dwBlockSize
Minimum amount of data, in bytes, to write to the disk log file at one time. This
field is provided for disk transfer optimization. The default is 8192.

164MaxCount
Maximum number of bytes to log. The default is 0, which causes logging to
continue indefinitely until DscStopAcquiring is invoked. Itisa TDscIoInt64
structure.

Remarks
TServerDiskLogConfigisusedin DscServerDiskLogConfigGet and
DscServerDiskLogConfigSet. TServerDiskLogConfig should be initialized
using DscStructPrepare or both functions will fail.

DscServerDiskLogConfigGet will return the server disk log configuration in the
dwFlags, pszFileName, dwFileShareMode, dwOpenFlags,
dwFilefFlagsAttributes, dwBlockSize,and 764MaxCount members of
TServerDiskLogConfig.

To use DscServerDiskLogConfigSet it is recommended that the user invokes
DscServerDiskLogConfigGet to get the server disk log configuration defaults,
updates the pertinent fields, and then invokes DscServerDiskLogConfigSet.

DSCIO DLL Programmer’s Interface 123

See Also
DscStructPrepare, DscServerDiskLogConfigGet,
DscServerDiskLogConfigSet

124 DSCIO DLL Programmer’s Interface

TXbPinConfig

The TXbPinConfig structure defines the behavior of DscXbPinConfigGet and
DscXbPinConfigSet.

typedef struct tag_TXbPinConfig {

int 7 InfoSize; /I Size of this structure.

int 7 Inputiype; /I Input type.

float fInputRange; /I Input range voltage.

float fInputOffset; /I Input offset voltage.

float fInputOffsetRange; /I Input offset range voltage.
float fOutputExcitation; /I Output excitation voltage.

} TXbPinConfig;

Members
iInfoSize
Size of this information structure.

iInputType
Type of input signal, DC coupling, AC coupling or excitation. These constants
simplify selecting the input type: DscXb_DCCoupling, DscXb_ACCoupling,
DscXb_Excitation. The defaultis DscXb_DCCoupling.

fInputRange
Input range of the signal specified in Volts. Please note that this input range is
different from DscInputRangeGet, and only works if DscInputRangeSet is
set to +/- 5V.

If you select 0.5 the input range is +/- 500 mV, if you select 2.0 the input range
+/- 2V. If you specify an invalid input range, the input range will not change from
its previous setting. The default is 10.0.

Valid input ranges are:
0.01, 0.02, 0.05,
0.1,0.2, 0.5,

1.0, 2.0, 5.0,
10.0

fInputOffset
Input offset of the signal specified in Volts. The input offset must be within the
range of the input offset range. If you specify an invalid input offset, the input
offset will not change from its previous setting. The default is 0.0.

DSCIO DLL Programmer’s Interface 125

fInputOffsetRange
Input offset range of the signal returned in Volts. The input offset range is
determined by the input range. For example, if the input range is 0.5 then the
input offset range is 2.5 for +/-2.5 V, if the input range is 2.0 then the input offset
range is 1.0 for +/- 1V. This is a read only property that is dependent on the input
range and you cannot specify it.

Valid input offset ranges are:

0.5 when the input range is 0.01
1.0 when the input range is 0.02
2.5 when the input range is 0.05
0.5 when the input range is 0.1
1.0 when the input range is 0.2
2.5 when the input range is 0.5
1.0 when the input range is 1.0
1.0 when the input range is 2.0
5.0 when the input range is 5.0

5.0 when the input range is 10.0

fOutputExcitation
Output excitation signal specified in Volts. If you specify an invalid output

excitation, the output excitation will not change from its previous setting. The
default is 0.0.

Valid output excitation ranges are:
0.0, 1.0, 2.0, 5.0, 10.0

Remarks
TXbPinConfigisusedin DscXbPinConfigGet and DscXbPinConfigSet.
TXbPinConfig should be initialized using DscStructPrepare or both functions
will fail.

DscXbPinConfigGet will return the pin configuration in the 7 InputType,
fInputRange, fInputOffset, fInputOffsetRange, and
fOutputExcitationmembers of TXbPinConfig.

Before invoking DscXbPinConfigSet, the i InputType, fInputRange,
finputOffset,and fOutputExcitation members of TXbPinConfig must be
set to the new desired values. fInput0ffsetRange cannot be set since it is a read
only property.

See Also
DscStructPrepare, DscXbPinConfigGet, DscXbPinConfigSet

126 DSCIO DLL Programmer’s Interface

Function Summary

The DSCIO interface provides a complete set of functions for communicating with the
iDSC board. Each function falls into one of several categories.

Category

Graphical services

Filter design services

Handle services

Communication services

I/0O services

System services

DSCIO DLL Programmer’s Interface

Dsc Services

DscConfigDialogOptionsGet
DscConfigDialogOptionsSet
DscConfigDialogShow

DscFilterIndex
DscFilterParametersGet
DscFilterParametersSet
DscPinToFilterMapGet
DscPinToFilterMapSet
DscTransferFunctionGet
DscUnitStepGet
DscUnitSteplLengthGet

DscHandleClose
DscHand1leOpen

DscCalibrate
DscCommandsLoad
DscStartAcquiring
DscStopAcquiring

DscBufferAvail
DscBufferGet
DscBufferGetEnabledGet
DscBuffetGetEnabledSet
DscBufferGetEx

DscAddressGet
DscAddressSet
DscGroupDelay
DscHardwareStop
DscldGet
DscldSet
DscInputRangeGet
DscInputRangeSet

127

DscMemoryUsed
DscPinEnabledCount
DscPinEnabledGet
DscPinEnabledSet
DscRunning
DscSampleRateGet
DscSampleRateSet
DscScansDiscarded
DscStructPrepare

DAPL services DscDaplTextGet
DscDaplTextLengthGet
DscDaplTextSet

Master/slave services DscMasterGet
DscMasterSet
DscOperateModeGet
DscOperateModeSet
DscRemoteMasterGet
DscRemoteMasterSet
DscSlaveCount
DscSlaveHandle

External board services DscXbCalibrate
DscXbEnabledGet
DscXbEnabledSet
DscXbPinConfigGet
DscXbPinConfigSet

Server disk log services DscServerDiskLogBytes
DscServerDiskLogConfigGet
DscServerDiskLogConfigSet
DscServerDiskLogEnabledGet
DscServerDiskLogEnabledSet
DscServerDiskLogFileNameGet
DscServerDiskLogFileNameSet

Timing channel services DscTcEnabledCount
DscTcEnabledGet
DscTcEnabledSet
DscTcMaximum
DscTcWidth

Error handling services DscLastErrorTextGet
DsclLastErrorTextSet

128 DSCIO DLL Programmer’s Interface

DscSystemErrorProcess

Events DscOnSystemErrorSet
Memory services DscConfigRead
DscConfigWrite
DscConfigWriteSize
Category DscGroup Services
Graphical services DscGroupConfigDialogShow
Handle services DscGroupHandleClose
DscGroupHandleOpen
Configuration services DscGroupAddOne
DscGroupCount
DscGroupDeleteOne
DscGroupDsc
Memory services DscGroupConfigRead
DscGroupConfigWrite

DscGroupConfigWriteSize

DSCIO DLL Programmer’s Interface 129

DscAddressGet

The DscAddressGet function gets the machine name and iDSC board name. The
name returned is in UNC format.

int __stdcall DscAddressGet(
HDSC hDsc, /I iDSC board handle.

int /1S7ze, /I Size of pszAddress buffer.
const char *pszAddress /I Pointer to buffer of characters.

)

Parameters
hDsc
Handle of the iDSC board.

iSize
Size of the pszAddress buffer that stores the DscAddress. The buffer is
allocated by the application.

pszAddress
Pointer to a buffer that stores the DscAddress. The buffer is allocated by the
application.

Return Values
If the function succeeds, the return value is the length of the string. If the function

fails, the return value is -1.

Remarks
DscAddressGet returns the machine name and the iDSC board name. An example

is \\.\Dap®, where \\ . denotes the local machine and \Dap® is the name of the
iDSC board.

See Also
DscAddressSet, UNC

130 DSCIO DLL Programmer’s Interface

DscAddressSet

The DscAddressSet function sets the machine name and iDSC board name. The
name returned is in UNC format.

int __stdcall DscAddressSet(
HDSC hDsc, /I iDSC board handle.

const char *pszAddress /I UNC name.

)

Parameters
hDsc

Handle of the iDSC board.

pszAddress
Pointer to a UNC name that specifies which iDSC board to open.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscAddressSet takes the parameter pszAddress, that consists of two portions,
the machine name and the iDSC board name. The naming method is based on the
UNC.

Using \\.\Dap® as an example, \\ . denotes the local machine and \Dap® is the
name of the iDSC board. If you are connected through DAPcell to a remote machine
named PC45 | that contains Dap®, then pszAddress is \\PC45\Dap0.

See Also
DscAddressGet, UNC

DSCIO DLL Programmer’s Interface 131

DscBufferAvail

The DscBufferAvail function gets the number of bytes available for reading from
the iDSC board.

int __stdcall DscBufferAvail(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the number of bytes available for
reading. If the function fails, the return value is -1. If there are no data available, the
return value is 0.

Remarks
DscBufferAvail returns the number of bytes already buffered. An application is
safe to read that number from the iDSC board without being blocked.

For efficient data transfer, it is best to use DscBufferGetEx with a time wait, and
avoid using DscBufferAvail. DscBufferGetEx returns the actual number of
bytes read which lets the application know what data have been transferred.

See Also
DscBufferGet, DscBufferGetEx

132 DSCIO DLL Programmer’s Interface

DscBufferGet

The DscBufferGet function reads a block of data from the iDSC board.

int __stdcall DscBufferGet(
HDSC hDsc, /I iDSC board handle.

int 71Bytes, /I Number of bytes to read.
int 7 7imelWait, /I Longest time to wait for data.
void *pvBuffer /I Address of buffer to receive data.

)

Parameters
hDsc
Handle of the iDSC board.

iBytes
Number of bytes to read.

iTimeWait
Longest time in milliseconds that the get operation can be blocked waiting for
data. If no data shows up in that amount of time, the operation should be aborted.

pvBuffer
Pointer to a buffer for storing the data from the iDSC board.

Return Values
If the function succeeds, the return value is the number of bytes read. If the function
fails, the return value is -1. If there are no data available, the return value is 0.

Remarks
DscBufferGet attempts to read all the requested 7By tes from the iDSC board. If,
all the requested 7By tes are not available for 7 77melWa it milliseconds, it returns

with the number of bytes read so far.

An application that cannot guarantee data availability should use DscBufferGetEx
to avoid waiting for data.

This function is useful for displaying the acquired and filtered data in graphs, tables,
etc.

DSCIO DLL Programmer’s Interface 133

See Also
DscBufferGetEx

134 DSCIO DLL Programmer’s Interface

DscBufferGetEnabledGet

The DscBufferGetEnabledGet function gets the state of the DscBufferGet
function and DscBufferGetEx function.

int __stdcall DscBufferGetEnabledGet(
HDSC hDsc /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 0 for disabled and 1 for enabled. If the
function fails, the return value is -1.

Remarks
DscBufferGetEnabledGet returns the state of the DscBufferGet function and
DscBufferGetEx function. If DscBufferGetEnabledGet is 0, DscBufferGet
and DscBufferGetEx are disabled, and invoking those functions will return -1. If
DscBufferGetEnabledGet is 1, DscBufferGet and DscBufferGetEx are
enabled.

See Also
DscBufferGet, DscBufferGetEnabledSet, DscBufferGetEx

DSCIO DLL Programmer’s Interface 135

DscBufferGetEnabledSet

The DscBufferGetEnabledSet function sets the state of the DscBufferGet
function and DscBufferGetEx function.

int __stdcall DscBufferGetEnabledSet(
HDSC hDsc, /I iDSC board handle.

int 71BufferGettnabled /I DscBufferGet/GetEx state.
)

Parameters
hDsc
Handle of the iDSC board.

iBufferGetEnabled
DscBuffetGet and DscBufferGetEx state.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscBufferGetEnabledSet sets the state of the DscBufferGet function and
DscBufferGetEx function. If iBufferGetfnabledis 0, DscBufferGet and
DscBufferGetEx are disabled, and invoking those functions will return -1. If
iBufferGetEnabledis 1, DscBufferGet and DscBufferGetEx are enabled.

DscBufferGetEnabledSet is useful if another PC wants to access the iDSC data
from the PC with the iDSC through networking. The networking capability is only
available with the DAPcell Local and DAPcell servers. It is not available with the
Accel32 server.

See Also
DscBufferGet, DscBufferGetEnabledGet, DscBufferGetEx

136 DSCIO DLL Programmer’s Interface

DscBufferGetEx

The DscBufferGetEx function reads a block of data from the iDSC board, using the
TBufferGetEx structure to control its behavior.

int __stdcall DscBufferGetEx(
HDSC hDsc, /I iDSC board handle.
const TBufferGetEx *pBufferGetEx, /I Address of structure.
void *pvBuffer /I Address of buffer to receive data.

)

Parameters
hDsc

Handle of the iDSC board.

pBufferGetEx
Pointer to a TBuf ferGetEx structure that passes the appropriate parameters.
TBufferGetEx must be initialized using DscStructPrepare.

pvBuffer
Pointer to a buffer for storing the data from the iDSC board.

Return Values
If the function succeeds, the return value is the number of bytes read. If the function
fails, the return value is -1. If there are no data available, the return value is 0.

Remarks
DscBufferGetEx is an extended version of DscBufferGet. It allows a minimum
request count, 7/MinBytes, and a maximum request count, iMaxBytes,
specification. Both iMinBytes and iMaxBytes are passed into this function
through the TBuf ferGetEx structure. Both iMinBytes and iMaxBytes are in
bytes and must be an integral multiple of 78y tesMultip]le. The function reads at
least iMinBytes bytes of data. Once it reads enough data to cover iMinBytes, the
function reads all available data up to 7MaxBytes without waiting. The actual bytes
returned is always an integral multiple of 7BytesMultiple.

Before iMinBytes is covered, the function will be blocked waiting for data if the
target pipe becomes empty. In this case, the two members of the TBufferGetEx
structure, 7 7imelWait and 7 TimeOut, determine the behavior of the function. If

DSCIO DLL Programmer’s Interface 137

iMinBytes is not covered in 7 77meOut milliseconds, or if no data are available for
iTimeWa 7t milliseconds, the function returns immediately. The return value is then
the number of bytes actually read up to the point where the operation is aborted. It
can be zero or any integral multiple of 71BytesMultiple less than iMinBytes. An
application can check the return value to determine if a time-out has occurred.

See Also
DscBufferGet

138 DSCIO DLL Programmer’s Interface

DscCalibrate

The DscCalibrate function performs calibration on the iDSC board.

int __stdcall DscCalibrate(
HDSC hDsc /I iDSC board handle.

)

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscCalibrate calibrates the iDSC board for DC gain and offset, and saves the

calibration values.

DscCalibrate is automatically invoked when a user selects DscStartAcquiring
for the first time. The next time a user uses the DLL, the saved calibration values are
reused.

If the calibration values are not found, calibration is automatically re-invoked. A
user can force recalibration by calling DscCalibrate.

See Also
DscStartAcquiring

DSCIO DLL Programmer’s Interface 139

DscCommandsLoad

The DscCommandslLoad function downloads the configuration commands to the
iDSC board and performs the necessary configuration for filtering.

int __stdcall DscCommandsLoad(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscCommandsLoad configures the iDSC board with the appropriate programs and
coefficients. The filter designs are used internally by DscCommandsLoad to
calculate and download the appropriate commands.

If the iDSC board input or filter designs change and DscStartAcquiringis
selected, DscStartAcquiring automatically invokes DscCommandsLoad and
downloads new commands to the iDSC board. Data will show up at the PC two
times DscGroupDelay seconds later.

If the iDSC board input or filter designs change and DscCommandsLoad is selected
before DscStartAcquiring, data will show up immediately at the PC. Data that
show up immediately are actually data that were sampled DscGroupDelay seconds
ago.

See Also
DscGroupDelay, DscStartAcquiring

140 DSCIO DLL Programmer’s Interface

DscConfigDialogOptionsGet

The DscConfigDialogOptionsGet function gets the display options of
DscConfigDialogShow.

int __stdcall DscConfigDialogOptionsGet(
HDSC hDsc /I iDSC board handle.

)

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the display options. If the function fails,
the return value is -1.

Remarks
DscConfigDialogOptionsGet returns the display options as an integer value.
The lowest eleven bits (bits 0 through bit 10) are used since there are eleven display
options, InputScreenHide, FDScreenHide (filter design screen hide), TcHide
(timing channels selection hide), FDOH1de (filter design index 0 hide), FD1Hide,
FD2Hide, FD3Hide, FD4Hide, FD5Hide, FD6Hide, FD7Hide.

InputScreenHide is bit 0, FDScreenHide isbit 1, TcHide is bit 2, FDOHide is
bit 3, FD1Hide is bit4, FD2Hide is bit 5, FD3Hide is bit 6, FD4Hide is bit 7,
FD5Hide is bit 8, FD6Hide is bit 9, FD7Hide is bit 10.

When the display options are enabled, the corresponding bits are set. When the
display options are disabled, the corresponding bits are cleared.

See Also
DscConfigDialogOptionsSet, DscConfigDialogShow

DSCIO DLL Programmer’s Interface 141

DscConfigDialogOptionsSet

The DscConfigDialogOptionsSet function allows manipulating the display
options of DscConfigDialogShow.

int __stdcall DscConfigDialogOptionsSet(
HDSC hDsc, /I iDSC board handle.
int 710ptions // Display options.
);

Parameters
hDsc

Handle of the iDSC board.
i0ptions
DscConfigDialogShow display options.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscConfigDialogOptionsSet specifies the display options of
DscConfigDialogShow. The defaultis DscConfigDialog_TcHide.

The constants below simplify selecting the display options.

DscConfigDialog_InputScreenHide Hide the Input Screen.

DscConfigDialog FDScreenHide Hide the Filter Design Screen.
DscConfigDialog _TcHide Hide the timing channels selection.
DscConfigDialog_FDOHide Hide filter design index O.
DscConfigDialog_FDIHide Hide filter design index 1.
DscConfigDialog_FDZHide Hide filter design index 2.
DscConfigDialog_FD3Hide Hide filter design index 3.
DscConfigDialog_FD4Hide Hide filter design index 4.
DscConfigDialog_FD5Hide Hide filter design index 5.
DscConfigDialog_FD6Hide Hide filter design index 6.
DscConfigDialog_FD7/Hide Hide filter design index 7.

142 DSCIO DLL Programmer’s Interface

See Also
DscConfigDialogOptionsGet, DscConfigDialogShow

DSCIO DLL Programmer’s Interface 143

DscConfigDialogShow

The DscConfigDialogShow function displays modal dialog screens for graphical
configuration of the inputs and filter designs.

int __stdcall DscConfigDialogShow(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the user selects the OK button when changes are made, the return value is IDOK
(of value 1). If the user selects the OK button when no changes are made, the return
value is IDIGNORE (of value 5). If the user selects the Cancel button, the return
value is IDCANCEL (of value 2).

If the function fails, the return value is 0.

Remarks
DscConfigDialogShow simplifies the configuration of the input and filter design
process with a graphical interface. The Input Screen provides a quick method for
selecting the sample rate, selecting the input range, mapping the input pins to
selected filter designs, and enabling or disabling the input pins.

144 DSCIO DLL Programmer’s Interface

The figure below displays the Input Screen.

i Configuration

I T I T
BRI TR I
cee oz s
IR R T
I S I TR
B T L
B T I
I = T

¥
v
¥
¥
¥
~
¥
¥

The Filter Design Screen allows easy manipulation of filter parameters like
sharpness, low cutoff frequency, low cutoff slope, high cutoff frequency, high cutoff
slope, and attenuation, either by entering a valid number or by adjusting a slider.
When the user selects the right click button, there are several more options like
Crosshair Track,Y Display (linear, linear zoom, log, log zoom, and unit step),
Defaults Load, Copy,and Paste. The Copy (Ctr1-C)and Paste (Ctrl-V)
feature copies the filter parameters from one filter design tab to another.

DSCIO DLL Programmer’s Interface 145

The figure below displays the Filter Design Screen.

i Configuration

A user can also design filters using the run-time design techniques available in the
one of the pairs of functions below.

DscFilterParametersGet & DscFilterParametersSet
DscPinToFilterMapGet & DscPinToFilterMapSet

The Input Screen, Filter Design Screen, timing channels selection, and individual
filter designs can be hidden using DscConfigDialogOptionsSet.

See Also
DscConfigDialogOptionsGet, DscConfigDialogOptionsSet,
DscFilterParametersGet, DscFilterParametersSet

146 DSCIO DLL Programmer’s Interface

DscConfigRead

The DscConfigRead function reads iDSC board information from memory.

int __stdcall DscConfigRead(
HDSC hDsc, /I iDSC board handle.
int i1S7ze, /I Size of memory allocated.
void *pvBuffer // Pointer to memory buffer.

)

Parameters
hDsc

Handle of the iDSC board.

iSize
Size of the memory buffer for the iDSC board information. The memory buffer is
allocated by the application.

pvBuffer
Pointer to the memory buffer that stores the iDSC board information. The
memory buffer is allocated by the application.

Return Values
If the function succeeds, the return value is the number of bytes read from memory.
If the function fails, the return value is 0.

Remarks
DscConfigRead reads iDSC board information in binary format from memory. The
information in memory is probably retrieved from a disk file.

The iDSC board information read includes the sample rate, input range, input pin to
filter mappings, enabled input pins, iDSC address, and details of the filter designs.
Note that when DscConfigRead is invoked, the iDSC address used in
DscHand1eOpen will be overwritten with the iDSC address that was stored in
DscConfigRead.

1S17ze is the value that was previously used as the 757 ze parameter of
DscConfigWrite when the iDSC board information was stored to memory. The
user cannot use DscConfigWriteSize for 1S7zein DscConfigRead because it

DSCIO DLL Programmer’s Interface 147

will not return the correct size. DscConfigWriteSize is provided only for the
DscConfigWrite operation.

See Also
DscConfigWrite, DscConfigWriteSize

148 DSCIO DLL Programmer’s Interface

DscConfigWrite

The DscConfigWrite function writes iDSC board information to memory.

int __stdcall DscConfigWrite(
HDSC hDsc, /I iDSC board handle.
int i1S7ze, /I Size of memory buffer.
void *pvBuffer // Pointer to memory buffer.

)

Parameters
hDsc

Handle of the iDSC board.

iSize
Size of the memory buffer for the iDSC board information. The memory buffer is
allocated by the application.

pvBuffer
Pointer to the memory buffer that stores the iDSC board information. The
memory buffer is allocated by the application.

Return Values
If the function succeeds, the return value is the number of bytes written to memory.
If the function fails, the return value is 0.

Remarks
DscConfigWrite writes iDSC board information in binary format to memory. The
information in memory can then be written to a disk file.

The iDSC board information written includes the sample rate, input range, input pin
to filter mappings, enabled input pins, iDSC address, and details of the filter
designs.

1S17zeis the size of the memory buffer allocated and must be at least
DscConfigWriteSize. 7S7ze should be stored by the program to be used later as
the 757 ze parameter of DscConfigRead.

DSCIO DLL Programmer’s Interface 149

See Also
DscConfigRead, DscConfigWriteSize

150 DSCIO DLL Programmer’s Interface

DscConfigWriteSize

The DscConfigWriteSize function returns the minimum number of bytes to
allocate for DscConfigWrite.

int __stdcall DscConfigWriteSize(
HDSC hDsc /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the minimum number of bytes to
allocate. If the function fails, the return value is 0.

Remarks
DscConfigWriteSize must be used to determine the minimum number of bytes to
allocate for the 757 ze parameter of DscConfigWrite. It cannot be used as the
1S7ze parameter of DscConfigRead

See Also
DscConfigWrite, DscConfigRead

DSCIO DLL Programmer’s Interface 151

DscDaplTextGet

The DscDap1TextGet function gets the DAPL text defined for the iDSC.

int __stdcall DscDaplTextGet(
HDSC hDsc, /I iDSC board handle.
int /1S7ze, /I Size of pszDap] Text buffer.
const char *pszDaplText /I Pointer to buffer of characters.

)

Parameters
hDsc
Handle of the iDSC board.

iSize
Size of the pszDap 1 Text buffer for the DAPL text. The buffer is allocated by
the application.

pszDaplText

Pointer to a buffer that stores the DAPL text. The buffer is allocated by the
application.

Return Values
If the function succeeds, the return value is the length of the string. If the function

fails, the return value is -1.

Remarks
DscDap1TextGet returns the DAPL text defined for the iDSC. Each line of DAPL

text is delimited by a carriage-return and line-feed.

The DAPL text is sent to the iDSC when the user invokes DscCommandsLoad or
DscStartAcquiring.

See Also
DscDaplTextLengthGet, DscDapl1TextSet

152 DSCIO DLL Programmer’s Interface

DscDaplTextLengthGet

The DscDaplTextLengthGet function gets the length of the DAPL text defined for
the iDSC.

int __stdcall DscDaplTextLengthGet(
HDSC hDsc // iDSC board handle.

);

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the length of the buffer for the DAPL
text. If the function fails, the return value is 0.

Remarks
DscDap1TextLengthGet returns the length of the buffer for the DAPL text
defined for the iDSC. This includes an extra character at the end for the null-
terminator.

DscDaplTextLengthGet allows the user to determine the size of buffer to allocate
when using the DscDap1TextGet function.

See Also
DscDapl1TextGet, DscDaplTextSet

DSCIO DLL Programmer’s Interface 153

DscDaplTextSet

The DscDap1TextSet function defines the DAPL text for the iDSC.

int __stdcall DscDaplTextSet(
HDSC hDsc, /I iDSC board handle.

const char *pszDaplText /I DAPL text.
);

Parameters
hDsc
Handle of the iDSC board.

pszDaplText
Pointer to the DAPL text.

Return Values

If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks

DscDapl1TextSet allows the user to define custom DAPL text for the iDSC. Each
line of DAPL text must be delimited by a carriage-return, line-feed, or both.

The DAPL text is sent to the iDSC when the user invokes DscCommandsLoad or

DscStartAcquiring.

See Also
DscDaplTextGet, DscDapl1TextLengthGet

154 DSCIO DLL Programmer’s Interface

DscFilterIndex

The DscFilterIndex function returns the filter index when given a filter name.

int __stdcall DscFilterindex(
HDSC hDsc, /I iDSC board handle.
const char *pszfilterName /I Filter name.

)

Parameters
hDsc

Handle of the iDSC board.

pszFilterName
Pointer to a filter name.

Return Values
If the function succeeds, the return value is the filter index. So, if the filter name of
interest is associated with filter index 0, the return value is 0. If the function fails,
the return value is -1. For example, if pszFilterName is an invalid name, failure
occurs.

Remarks
DscFilterIndex determines the filter index associated with a particular filter
name. Since there are a maximum of eight filter designs, valid filter indices are 0
through 7.

The filter index is useful in functions like DscFilterParametersGet,
DscFilterParametersSet, DscPinToFilterMapGet and
DscPinToFilterMapSet.

See Also
DscFilterParametersGet, DscFilterParametersSet

DSCIO DLL Programmer’s Interface 155

DscFilterParametersGet

The DscFilterParametersGet function gets the filter parameters associated with a
filter index. The filter parameters include the name, type, sharpness, cutoff frequency,
cutoff slope, and attenuation.

int __stdcall DscFilterParametersGet(

HDSC hDsc, /I iDSC board handle.
int 7Filterindex, /I Filter index.
TFilterParam *pFilterParam /I Address of structure.
);
Parameters
hDsc
Handle of the iDSC board.

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

pFilterParam
Pointer to a TFi1terParam structure that receives the filter parameters.

TFilterParam must be initialized using DscStructPrepare.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscFilterParametersGet returns the filter parameters for an associated filter

index in the TFilterParam structure. TFi1terParam must be initialized using
DscStructPrepare before invoking DscFilterParametersGet or the function

will fail.

Valid filter indices are 0 through 7. If the filter index is invalid, the function will
fail.

See Also
DscConfigDialogShow, DscFilterParametersSet, TFilterParam

156 DSCIO DLL Programmer’s Interface

DscFilterParametersSet

The DscFilterParametersSet function sets the filter parameters associated with a
filter index. The filter parameters include the name, type, sharpness, cutoff frequency,
cutoff slope, and attenuation.

int __stdcall DscFilterParametersSet(

HDSC hDsc, /I iDSC board handle.
int 7Filterindex, /I Filter index.
const TFilterParam *pFilterParam /I Address of structure.
);
Parameters
hDsc
Handle of the iDSC board.

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

pFilterParam
Pointer to a TFi1terParam structure that passes the filter parameters.
TFilterParam must be initialized using DscStructPrepare.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscFilterParametersSet modifies the filter parameters for an associated filter
index. All members of TFi1terParam must be set before invoking
DscFilterParametersSet.

TFilterParam must be initialized using DscStructPrepare before invoking
DscFilterParametersSet or the function will fail. The achName,
iFilterType, iSharpness, fCutoffFreqlow, fCutoffSlopelow,
fCutoffFreqgHigh, FCutoffSlopeHigh,and fAttenuation members of
TFilterParam must be set to the new desired values. Note that the filter
parameters can be graphically set in DscConfigDialogShow.

DSCIO DLL Programmer’s Interface 157

Valid filter indices are 0 through 7. If the filter index is invalid, the function will
fail.

See Also
DscConfigDialogShow, DscFilterParametersGet, TFilterParam

158 DSCIO DLL Programmer’s Interface

DscGroupDelay

The DscGroupDelay function returns the group delay in seconds for all of the filter
designs.

int __stdcall DscGroupDelay(
HDSC hDsc, /I iDSC board handle.
float *fGroupDelay // Address to receive group delay.

)

Parameters
hDsc

Handle of the iDSC board.

fGroupDelay
Pointer to a float that receives the group delay. The float variable is allocated by
the application.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscGroupDelay informs a user of the group delay (in seconds) through all the filter
designs. The group delay is the amount of time to wait before data start showing up
at the PC, and does not include the filter designs of disabled input pins.

If the iDSC board inputs or filter designs change and DscStartAcquiringis
selected, DscStartAcquiring automatically invokes DscCommandsLoad and
downloads new commands to the iDSC board. Data will show up at the PC two
times DscGroupDelay seconds later.

If the iDSC board inputs or filter designs change and DscCommandsLoad is selected
before DscStartAcquiring, data will show up immediately at the PC. Data that
show up immediately are actually data that were sampled DscGroupDelay seconds
ago.

See Also
DscCalibrate, DscCommandsLoad, DscStartAcquiring

DSCIO DLL Programmer’s Interface 159

DscHandleClose

The DscHandleClose function releases a handle previously opened with
DscHand1eOpen.

int __stdcall DscHandleClose(
HDSC hDsc // iDSC board handle to close.

)

Parameters
hDsc

Handle of the iDSC board to close. It must be a handle previously opened by
DscHand1eOpen.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscHand1eC1ose terminates communication with the iDSC board.
DscHand1leClose is the last function called by any application ready to end
communication with the iDSC board.

See Also
DscHand1leOpen

160 DSCIO DLL Programmer’s Interface

DscHandleOpen

The DscHand1eOpen function returns a handle to the target iDSC board when given a
UNC name. The UNC name includes the machine name and the iDSC board name set
by DscAddressSet and returned by DscAddressGet.

HDSC __stdcall DscHandleOpen(
const char *pszAddress /I UNC name of the iDSC board.

)

Parameters
pszAddress
Pointer to a UNC target name string that specifies which iDSC board to open.

Return Values
If the function succeeds, the return value is an open handle to the specified target. If
the function fails, the return value is a NULL handle (of value 0).

Remarks
DscHand1eOpen initiates communication with the iDSC board. DscHand1eOpen is
the first function called by any application ready to begin communication with the
iDSC board. It returns a handle to the target iDSC board when given a UNC name.

A handle is a 32-bit value that references the iDSC board. This handle is used in all
DscXxxx services to reference the appropriate iDSC board.

See Also
DscAddressGet, DscAddressSet, DscHandleClose

DSCIO DLL Programmer’s Interface 161

DscHardwareStop

The DscHardwareStop function stops the hardware on the iDSC board.

int __stdcall DscHardwareStop(
HDSC hDsc, /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscHardwareStop stops and resets the hardware on the iDSC board.

See Also
DscRunning

162 DSCIO DLL Programmer’s Interface

DscldGet

The DscIdGet function gets the identification name of the iDSC board.

int __stdcall DscldGet(
HDSC hDsc, /I iDSC board handle.
int /1S7ze, /I Size of pszId buffer.
const char *pszId /I Pointer to buffer of characters.

)

Parameters
hDsc
Handle of the iDSC board.
iSize
Size of the psz1d buffer that stores the Dscld. The buffer is allocated by the
application.

pszIld
Pointer to a buffer that stores the Dscld. The buffer is allocated by the
application.

Return Values
If the function succeeds, the return value is the length of the string. If the function
fails, the return value is -1.

Remarks
DscIdGet returns the identification name of the iDSC board. The Dscld is
unrelated to the DscAddress. The default identification names for the iDSC boards
on a system are iDsc@, iDscl, ..., etc. A maximum of 14 iDSC boards may

run on one system.

See Also
DscIdSet

DSCIO DLL Programmer’s Interface 163

DscldSet

The DscIdSet function sets the identification name of the iDSC board.

int __stdcall DscldSet(
HDSC hDsc, /I iDSC board handle.
const char *pszId /' ldentification name.

)

Parameters
hDsc
Handle of the iDSC board.

pszIld
Pointer to an identification name for the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscldSet allows a user to assign a unique identification name to the iDSC board.
The default identification names for the iDSC boards on a system are iDsc0,
iDscl, ...,etc. A maximum of 14 iDSC boards may run on one system.

See Also
DscldGet

164 DSCIO DLL Programmer’s Interface

DscinputRangeGet

The DscInputRangeGet function gets the input range of the iDSC board.

int __stdcall DscinputRangeGet(
HDSC hDsc /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the input range. If the function fails, the
return value is 0.

Remarks
DscInputRangeGet returns the input range on the iDSC board. The return value
will be either 5000 to represent +/- 5 Volts or 10000 to represent +/- 10 Volts.

See Also
DscInputRangeSet

DSCIO DLL Programmer’s Interface 165

DscilnputRangeSet

The DscInputRangeSet function sets the input range of the iDSC board.

int __stdcall DscinputRangeSet(
HDSC hDsc, /I iDSC board handle.

int 7 InputRange /I Input range.
);

Parameters
hDsc
Handle of the iDSC board.

iInputRange
Input range to set.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscInputRangeSet configures the input range on the iDSC board. A user can

select either +/- 5 Volts or +/- 10 Volts.

To use this property the voltages must be specified as absolute values in millivolts.
For example, 5000 represents +/- 5 Volts and 10000 represents +/- 10 Volts.

If the user selects an invalid input range, the function will fail and return an error
code of 0. The error can be retrieved using DscLastErrorTextGet.

See Also
DscInputRangeGet

166 DSCIO DLL Programmer’s Interface

DscLastErrorTextGet

The DscLastErrorTextGet function gets the last error message that occurred in the
DSCIO DLL.

int _stdcall DscLastErrorTextGet(

int /1S7ze, /I Size of pszError buffer.
const char *pszError /I Pointer to buffer of characters.
);
Parameters
iSize

Size of the pszError buffer that stores the last error message. The buffer is
allocated by the application.

pszError
Pointer to a buffer that stores the last error message. The buffer is allocated by the

application.

Return Values
The function always returns the length of the string. If the function returns 0, it could

mean that the string is empty or 757 ze is invalid.

Remarks
DscLastErrorTextGet returns the last error message that occurred in the DSCIO

DLL. An error occurs in the DSCIO DLL when a function call fails. To use
DsclLastErrorTextGetcorrectly, it must be called immediately after the function
of interest.

If a function call does not fail, the last error message is empty. If a function call
fails, the last error message is updated by the last function call that failed. The last
error message will stay the same until another function call fails. To clear the last
error message, use the DscLastErrorTextSet function.

See Also
DsclLastErrorTextSet

DSCIO DLL Programmer’s Interface 167

DscLastErrorTextSet

The DscLastErrorTextSet function updates the last error message.

int __stdcall DscLastErrorTextSet(
const char *pszError /I Error message

)

Parameters
pszError
Pointer to an error message.

Return Values
The function always returns 1.

Remarks
DscLastErrorTextSet allows the user to update the last error message. However,
if a function fails in the DSCIO DLL, the function will update the last error message.

DscLastErrorTextSet is only useful if the user has a reason to clear or change
the last error message.

See Also
DsclLastErrorTextGet

168 DSCIO DLL Programmer’s Interface

DscMasterGet

The DscMasterGet function gets the handle of a Master iDSC board when invoked
on a Slave iDSC board. DscMasterGet is only wuseful in a
Master/Slave Configuration.

HDSC __stdcall DscMasterGet(
HDSC hDscSTave /I Slave iDSC board handle.

)

Parameters
hDscSTlave

Handle of the Slave iDSC board.

Return Values
If the function succeeds, the return value is the Master iDSC board handle. If the
function fails, the return value is a NULL handle (of value 0).

Remarks
DscMasterGet gives access to all Master iDSC boards on a system when invoked
on a Slave iDSC board in a Master/Slave Configuration. If DscMasterGet is
invoked on a Master or Normal iDSC board, the return value is a NULL handle.

See Also
DscMasterSet, DscOperateModeGet, DscOperateModeSet,
DscRemoteMasterSet

DSCIO DLL Programmer’s Interface 169

DscMasterSet

The DscMasterSet function connects a Slave iDSC board to a Master iDSC board.
DscMasterSet is only useful in a Master/Slave Configuration.

int __stdcall DscMasterSet(
HDSC hDscSlave, /I Slave iDSC board handle.
HDSC hDscMaster /l Slave Master handle to set.

)

Parameters
hDscSTave

Handle of the Slave iDSC board.

hDscMaster
Handle of the Master iDSC board to set to the Slave iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscMasterSet connects a Slave iDSC board to a Master iDSC board in a
Master/Slave configuration. The only way to specify the iDSC board as a master or
slave is by invoking DscMasterSet using two unique iDSC board handles.

When DscMasterSet completes, the specified slave becomes a Slave iDSC board
and the specified master becomes a Master iDSC board. DscMasterSet will
automatically update the operational state of the iDSC board in
DscOperateModeGet. If non-unique iDSC board handles are used, the Master and
Slave iDSC boards are not connected.

See Also
DscMasterGet, DscOperateModeGet, DscOperateModeSet,
DscRemoteMasterSet

170 DSCIO DLL Programmer’s Interface

DscMemoryUsed

The function DscMemoryUsed displays the used memory on the iDSC board.

int __stdcall DscMemoryUsed(
HDSC hDsc, /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the amount of memory used, expressed
in tenths of a percent. If the function fails, the return value is 0.

Remarks
DscMemoryUsed displays the used memory on the iDSC board in tenths of a
percent. As an example, if DscMemoryUsed returns 42, it means that 4.2% of
memory is used.

DscMemoryUsed is useful in determining whether or not the iDSC board will be
able to sustain a particular sample rate without overflowing.

DSCIO DLL Programmer’s Interface 171

DscOnSystemErrorSet

The DscOnSystemErrorSet function runs when the system encounters a failure.

int __stdcall DscOnSystemErrorSet(
HDSC hDsc, /I iDSC board handle.

TProcSystemErrorStdcall *Proc, /I Pointer to function.
void *pInfo /I Pointer to additional information.

)

Parameters
hDsc
Handle of the iDSC board.

Proc
Pointer to function with the format TProcSystemErrorStdcall.

pInfo
Pointer to additional information to satisfy type calling conventions.

Return Values
If the function succeeds, the return value is the pointer to a null-terminated message

text string. If the function fails, the return value is the pointer to a null string.

Remarks
DscOnSystemErrorSet is useful in determining if the system has encountered a

failure since it provides a way to access the errors. DscOnSystemErrorSet runs
when DscSystemErrorProcess is invoked. DscSystemErrorProcess is
automatically invoked during DscBufferGetEx if there are errors from the iDSC.
The user can also call DscSystemErrorProcess and invoke
DscOnSystemErrorSet if errors from the iDSC are suspected.

An example of a system error is an input channel pipe overflow when the sample
rate of the iDSC board is too high for the PC to keep up.

See Also
DscSystemErrorProcess, TProcSystemErrorStdcall

172 DSCIO DLL Programmer’s Interface

DscOperateModeGet

The DscOperateModeGet function gets the operational mode of the iDSC board.
Valid operational modes are Normal, Master, or Slave.

int __stdcall DscOperateModeGet(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the operate mode. If the function fails,
the return value is -1.

If the operate mode is Normal, the return value is the constant Dsc_Normal.

Remarks
DscOperateModeGet informs a user of the operational mode of the iDSC board.

The values returned for the operational mode correspond to the constants below.

Dsc_Normal, Dsc_Master, Dsc_Slave

See Also
DscMasterGet, DscMasterSet, DscOperateModeSet, DscRemoteMasterSet

DSCIO DLL Programmer’s Interface 173

DscOperateModeSet

The DscOperateModeSet function sets the operational mode of the iDSC board.
Valid operational modes are Normal, Master, or Slave.

int __stdcall DscOperateModeSet(
HDSC hDsc, /I iDSC board handle.
int 70perateMode /I Selected operate mode.

)

Parameters
hDsc
Handle of the iDSC board.

i0perateMode
Operate mode to select. Use only the constant Dsc_Normal.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscOperateModeSet is provided to allow the user to select a Normal iDSC board.
DscOperateModeSet cannot be used to specify Master and Slave iDSC boards.
Instead, DscMasterSet should be used to set up Master and Slave iDSC boards.
DscMasterSet will automatically update the mode to the correct state.

The constants below simplify selecting the operate mode.

Dsc_Normal, Dsc_Master, Dsc_Slave

The following call may be used to set the operational mode to Normal.

DscOperateModeSet(hDsc, Dsc_Normal);

See Also
DscMasterGet, DscMasterSet, DscOperateModeGet, DscRemoteMasterSet

174 DSCIO DLL Programmer’s Interface

DscPinEnabledCount

The DscPinEnabledCount function returns the number of enabled input pins on the
iDSC board.

int __stdcall DscPinEnabledCount(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the number of enabled input pins. If the
function fails, the return value is 0.

Remarks
DscPinEnabledCount returns the number of enabled input pins on the iDSC
board. It is related to the DscPinEnabledGet and DscPinEnabledSet functions.
Valid values for the enabled input pin count are in the range one to eight.

See Also
DscPinEnabledGet, DscPinEnabledSet

DSCIO DLL Programmer’s Interface 175

DscPinEnabledGet

The DscPinEnabledGet function gets the enabled input pins on the iDSC board.

int __stdcall DscPinEnabledGet(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the enabled input pins. If the function
fails, the return value is zero since at least one input pin must be enabled.

Remarks
DscPinEnabledGet returns the enabled input pins as an integer value. Only the
lowest eight bits (bit 0 through bit 7) are used since there are a total of eight input
pin options, AQ, A1, A2, A3, A4, A5, A6, and A7. AQ is bit 0, A1 is bit 1, A2 is bit 2,
A3 is bit 3, A4 is bit 4, A5 is bit 5, A6 is bit 6, and A7 is bit 7 of the returned integer
value.

When the input pins are enabled, the corresponding bits are set. When the input pins
are disabled, the corresponding bits are cleared. To find out the number of enabled
input pins, use the DscPinEnabledCount function.

See Also
DscPinEnabledCount, DscPinEnabledSet

176 DSCIO DLL Programmer’s Interface

DscPinEnabledSet

The DscPinEnabledSet function sets the enabled input pins on the iDSC board.

int __stdcall DscPinEnabledSet(
HDSC hDsc, /I iDSC board handle.
int i1PinEnabled /I Input pins to enable.

)

Parameters
hDsc

Handle of the iDSC board.

iPinEnabled
Input pins to enable.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscPinEnabledSet enables or disables the input pins using the 7PinEnabled
integer value. Only the lowest eight bits (bit 0 through bit 7) are used since there are
a total of eight input pin options, A@, A1, A2, A3, A4, A5, A6, and A7. AQ is bit 0, A1
isbit 1, A2 is bit 2, A3 is bit 3, A4 is bit 4, A5 is bit 5, A6 is bit 6, and A7 is bit 7 of
iPinEnabled.

When the input pins are enabled, the corresponding bits are set. When the input pins
are disabled, the corresponding bits are cleared. To find out the number of enabled
input pins, use the DscPinEnabledCount function.

The constants below simplify enabling the input pins.

DscPin_A®@, DscPin_Al, DscPin_A2, DscPin_A3,
DscPin_A4, DscPin_A5, DscPin_A6, DscPin_A7

The following example is used to enable input pins A1, A3 and A6.
DscPinEnabledSet(hDsc, DscPin_Al|DscPin_A3|DscPin_A6);

DSCIO DLL Programmer’s Interface 177

See Also
DscPinEnabledCount, DscPinEnabledGet

178 DSCIO DLL Programmer’s Interface

DscPinToFilterMapGet

The DscPinToFilterMapGet function gets the mapping of a filter index to an input
pin index.

int __stdcall DscPinToFilterMapGet(
HDSC hDsc, /I iDSC board handle.

int i1PinIndex /l Input pin index.

)

Parameters
hDsc
Handle of the iDSC board.

iPinlndex
Input pin index of interest. Valid input pin indices are 0 through 7.

Return Values
If the function succeeds, the return value is the filter index. If the function fails, the

return value is -1.

If the input pin of interest is mapped to filter index 0, the return value is 0.

Remarks
DscPinToFilterMapGet returns the filter index that is mapped to an input pin
index. The default mapping is: input pin index 0 to filter index 0, input pin index 1
to filter index 1, ..., input pin index 7 to filter index 7.

Valid input pin indices are 0 through 7, which correspond to input pins A@ through
A7. Valid filter indices are 0 through 7. If an input pin index is invalid, the function
will fail.

See Also
DscConfigDialogShow, DscPinToFilterMapSet

DSCIO DLL Programmer’s Interface 179

DscPinToFilterMapSet

The DscPinToFilterMapSet function sets the mapping of a filter index to an input
pin index.

int __stdcall DscPinToFilterMapSet(
HDSC hDsc, /I iDSC board handle.

int i1Pinindex, /[Input pin index.
int iFilterindex /I Filter index to map.

)

Parameters
hDsc
Handle of the iDSC board.

iPinlndex
Input pin index of interest. Valid input pin indices are 0 through 7.

iFilterIndex
Filter index to map to the input pin index. Valid filter indices are 0 through 7.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscPinToFilterMapSet associates a filter index to a corresponding input pin

index.

Valid input pin indices are 0 through 7, which correspond to input pins A@ through
A7. Valid filter indices are 0 through 7. If an input pin index or filter index is
invalid, the function will fail.

See Also
DscConfigDialogShow, DscPinToFilterMapGet

180 DSCIO DLL Programmer’s Interface

DscRemoteMasterGet

The DscRemoteMasterGet function gets the remote master state of the
Master/Slave Configuration.

int __stdcall DscRemoteMasterGet(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 0 for disabled and 1 for enabled. If the

function fails, the return value is -1.

Remarks
DscRemoteMasterGet returns the remote master state of the master/slave
configuration. If DscRemoteMasterGet is 0, the remote master state is disabled. If
DscRemoteMasterGet is 1, the remote master state is enabled.

The remote master state enables the user to synchronize multiple iDSCs across PCs.
It only works if the MSXB 045 hardware is present. Please refer to the MSXB 045
hardware manual for more description on the hardware.

See Also
DscMasterSet, DscOperateModeGet, DscRemoteMasterSet

DSCIO DLL Programmer’s Interface 181

DscRemoteMasterSet

The DscRemoteMasterSet function sets the remote master state of the
Master/Slave Configuration.

int __stdcall DscRemoteMasterSet(

HDSC hDsc, /I iDSC board handle.
int 7RemoteMaster /I Remote master state.
)
Parameters
hDsc
Handle of the iDSC board.

TRemoteMaster
Remote master state.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscRemoteMasterSet sets the remote master state of the master/slave
configuration. If iRemoteMaster is 0, the remote master state is disabled. If
iRemoteMaster is 1, the remote master state is enabled.

The remote master state enables the user to synchronize multiple iDSCs across PCs.
It only works if the MSXB 045 hardware is present. Please refer to the MSXB 045
hardware manual for more description on the hardware.

See Also
DscMasterGet, DscOperateModeGet, DscRemoteMasterSet

182 DSCIO DLL Programmer’s Interface

DscRunning

The DscRunning function returns the state of the iDSC board.

int __stdcall DscRunning(
HDSC hDsc, /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 0 for not running and 1 for running. If
the function fails, the return value is -1.

Remarks
DscRunning specifies whether the iDSC is running. Once DscStartAcquiringis
invoked, DscRunning will return 1. Once DscStopAcquiring is invoked,
DscRunning will return 0.

See Also
DscHardwareStop, DscStartAcquiring, DscStopAcquiring

DSCIO DLL Programmer’s Interface 183

DscSampleRateGet

The DscSampleRateGet function gets the effective sampling rate per channel on the
iDSC board.

int __stdcall DscSampleRateGet(
HDSC hDsc // iDSC board handle.

);

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the sampling rate. If the function fails,
the return value is 0.

Remarks
DscSampleRateGet returns the effective sampling rate for each channel on the
iDSC board in units of samples per second. There are two effective sampling rates in
the highest octave and lowest octave, and three effective sampling rates in every
other octave.

Note: See DscSampleRateSet for the valid sampling rates.

See Also
DscConfigDialogShow, DscSampleRateSet

184 DSCIO DLL Programmer’s Interface

DscSampleRateSet

The DscSampleRateSet function sets the effective sampling rate per channel on the
iDSC board.

int __stdcall DscSampleRateSet(
HDSC hDsc, /I iDSC board handle.

int 7SampleRate /I Sample rate.

)

Parameters
hDsc
Handle of the iDSC board.

iSampleRate
Effective sample rate to set.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscSampleRateSet sets the effective sampling rate for each channel on the iDSC

board in units of samples per second. The table below displays the valid sample
rates arranged in octaves. There are two effective sampling rates in the highest
octave.

153600
102400 76800
51200 38400
25600 19200 15360
12800 10240 9600 7680
6400 5120 4800 3840
3200 3072 2560 2400 2048 1920
1600 1536 1280 1200 1024 960
800 768 640 600 512 480
400 384 320 300 256 240
200 192 160 150 128 120

DSCIO DLL Programmer’s Interface 185

100 96

50 48
25 24
12

80
40
20
10

75

64 60
32 30
16 15
8

If an invalid sample rate is selected, the function will automatically select the closest
larger sample rate. The function is always successful in this case.

When the sampling rate is changed, the 7Sharpness, fCutoffSilope, and
fAttenuation members of TFilterParam will return their default values when
used with DscFilterParametersGet. Only fCutoffFfreq will retain its
previously set value if the set value is valid. If the previously set value of
fCutoffFreqis out of range, then fCutoffFreq will also return the default value.

See Also

DscConfigDialogShow, DscSampleRateGet

186

DSCIO DLL Programmer’s Interface

DscScansDiscarded

The DscScansDiscarded function returns the number of scans thrown away since
DscCommandsLoad.

int __stdcall DscScansDiscarded(
HDSC hDsc, /I iDSC board handle.
__int64 *764Discarded /l Address to receive the scans.

)

Parameters
hDsc

Handle of the iDSC board.

i64Discarded
Pointer to a 64-bit integer that receives the scans discarded. The __int64
variable is allocated by the application.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscScansDiscarded informs the user of the scans discarded since
DscCommandsLoad. This information is useful in calculating timing delays.

A scan is a set of enabled input pins. For example, if there are five enabled input
pins, a scan consists of five samples, if there are two enabled input pins, a scan
consists of two samples.

See Also
DscCommandsLoad

DSCIO DLL Programmer’s Interface 187

DscServerDiskLogBytes

The DscServerDiskLogBytes function returns the number of bytes logged to disk
by the server.

int __stdcall DscServerDiskLogBytes(
HDSC hDsc, /I iDSC board handle.
TDscloInt64 *i64Bytes // Address to receive logged bytes.

)

Parameters
hDsc

Handle of the iDSC board.

164Bytes
Pointer to a TDscloInt64 structure that receives the number of bytes logged.
The TDscIoInt64 variable is allocated by the application.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscServerDiskLogBytes informs the user of the number of bytes logged to disk
by the server. It is a TDscIoInt64 structure. It should be called after
DscStartAcquiringis invoked if DscServerDiskLogEnabledGet is 1.
DscServerDiskLogBytes will return O if no data has been logged to disk.

See Also
DscServerDiskLogEnabledGet, DscServerDiskLogEnabledSet,
DscServerDiskLogConfigGet, DscServerDiskLogConfigSet

188 DSCIO DLL Programmer’s Interface

DscServerDiskLogConfigGet

The DscServerDiskLogConfigGet function gets the server disk log configuration
through TServerDiskLogConfig.

int __stdcall DscServerDiskLogConfigGet(
HDSC hDsc, /I iDSC board handle.

TServerDiskLogConfig
*pServerDisklLogConfig, /I Address of structure.

)

Parameters
hDsc
Handle of the iDSC board.

pServerDiskLogConfig
Pointer to a TServerDiskLogConf1ig structure that receives the server disk log

configuration. TServerDiskLogConfig must be initialized using
DscStructPrepare.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscServerDiskLogConfigGet returns the server disk log configuration in the

TServerDiskLogConfig structure. TServerDiskLogConfig must be initialized
using DscStructPrepare before invoking DscServerDiskLogConfigGet or
the function will fail.

The pszFileName field of TServerDiskLogConfig must be initialized to point
to the user allocated buffer. The size of the user allocated buffer must be specified
using the dwf7TeNameSize field. It must include an extra space for the null
terminator.

If dwFileNameSize is 0, the file name is not returned in pszFileName. If
dwfFileNameSizeis 1, only the null terminator is returned in pszFileName.

DSCIO DLL Programmer’s Interface 189

See Also
DscServerDiskLogConfigSet, TServerDiskLogConfig

190 DSCIO DLL Programmer’s Interface

DscServerDiskLogConfigSet

The DscServerDiskLogConfigSet function sets the server disk log configuration
through TServerDiskLogConfig.

int __stdcall DscServerDiskLogConfigSet(
HDSC hDsc, /I iDSC board handle.
const TServerDiskLogConfig
*pServerDisklLogConfig, /I Address of structure.

)

Parameters
hDsc

Handle of the iDSC board.

pServerDiskLogConfig
Pointer to a TServerDiskLogConf1ig structure that passes the server disk log
configuration. TServerDiskLogConfig must be initialized using
DscStructPrepare.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscServerDiskLogConfigSet modifies the server disk log configuration through
the TServerDiskLogConfig structure. TServerDiskLogConfig must be
initialized using DscStructPrepare before invoking
DscServerDiskLogConfigSet or the function will fail.

The pszFileName field of TServerDiskLogConfig must be initialized to point
to the user allocated and initialized buffer. The dwfileNameSize field is not used.

It is recommended that the user invokes DscServerDiskLogConfigGet to get the
server disk log configuration defaults, updates the pertinent fields, and then invokes
DscServerDiskLogConfigSet to set the new desired values.

The DAPcell Local or DAPcell server will start a disk logging session when
DscStartAcquiring is invoked only if the following has been done:

DSCIO DLL Programmer’s Interface 191

1) Under Windows Control Panel | Data Acquisition Processor | Disk 1/O tab | Disk
Logging:

- Set the Default Path to a valid path (or valid paths) on the server PC
- Set the Permission to Restrictedor Normal
- Select the Save button before closing the dialog, or changes will be lost

For more information on Default Path and Permission, refer to the DAP
Service documentation by selecting the He 1 p button, or going to the main
documentation reference on the DAPtools CD.

2) Set a valid filename for pszFileName of TServerDiskLogConfig.
3) Enable DscServerDiskLogEnabledSet.
The disk logging session will end when DscStopAcquiring is invoked.

The Accel32 server does not support server disk logging sessions.

See Also
DscServerDiskLogConfigGet, DscServerDiskLogBytes,
DscServerDiskLogEnabledSet, TServerDiskLogConfig

192 DSCIO DLL Programmer’s Interface

DscServerDiskLogEnabledGet

The DscServerDiskLogEnabledGet function gets the state of the server disk log
option.

int __stdcall DscServerDiskLogEnabledGet(
HDSC hDsc, /I iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 0 for disabled and 1 for enabled. If the
function fails, the return value is -1.

Remarks
DscServerDiskLogEnabledGet returns the state of the server disk log option. If
DscServerDiskLogEnabledGet is 0, the server will not log any data to disk when
DscStartAcquiringisinvoked. If DscServerDiskLogEnabledGet is 1, the
server will log data to disk when DscStartAcquiring is invoked.

See Also
DscServerDiskLogEnabledSet, DscServerDiskLogConfigSet

DSCIO DLL Programmer’s Interface 193

DscServerDiskLogEnabledSet

The DscServerDiskLogEnabledSet function sets the state of the server disk log
option.

int __stdcall DscServerDiskLogEnabledSet(
HDSC hDsc, /I iDSC board handle.
int i1Sd/Enabled I/l Server disk log state.

)

Parameters
hDsc
Handle of the iDSC board.

iSdiEnabled
Server disk log state.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscServerDiskLogEnabledSet sets the state of the server disk log option. If
iSd1Enabledis 1, the server will log data to disk when DscStartAcquiringis
invoked. If 7Sd1Enabled is 0, the server will not log any data to disk when
DscStartAcquiring is invoked.

See Also
DscServerDiskLogEnabledGet, DscServerDiskLogConfigSet

194 DSCIO DLL Programmer’s Interface

DscServerDiskLogFileNameGet

The DscServerDiskLogFileNameGet function gets the file name used for server
disk logging.

int __stdcall DscServerDiskLogFileNameGet(
HDSC hDsc, /I iDSC board handle.
int /1S7ze, /I Size of pszFileName buffer.
const char *pszfileName /I Pointer to buffer of characters.

)

Parameters
hDsc
Handle of the iDSC board.
iSize
Size of the pszFileName buffer that stores the file name. The buffer is allocated
by the application.

pszFileName
Pointer to a buffer that stores the file name. The buffer is allocated by the

application.

Return Values
If the function succeeds, the return value is the length of the string. If the function

fails, the return value is -1.

Remarks
DscServerDiskLogFileNameGet returns the name of the primary disk log file
and the name of a possible mirror disk log file, if mirror logging is enabled. The
default is an empty string.

See Also
DscServerDiskLogFileNameSet, TServerDiskLogConfig

DSCIO DLL Programmer’s Interface 195

DscServerDiskLogFileNameSet

The DscServerDiskLogFileNameSet function sets the file name to use for server
disk logging.

int __stdcall DscServerDiskLogFileNameSet(
HDSC hDsc, /I iDSC board handle.
const char *pszfileName /I File name.

)

Parameters
hDsc

Handle of the iDSC board.

pszFileName
Pointer to a file name to use for server disk logging.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscServerDiskLogFileNameSet specifies the name of the primary disk log file
and the name of a possible mirror disk log file, if mirror logging is enabled. The
default is an empty string. You can also set the file name through pszFiTeName in
TServerDiskLogConfig.

Mirror logging is enabled by selecting the DscD1fMirrorLog flag of dwflags in
TServerDiskLogConfig. Multiple file names are separated by semi-colons.
Currently, only one mirror file is allowed. Both files must be on the same side of the
DAPcell Local/DAPcell service (the PC application side or the iDSC side).

See Also
DscServerDiskLogFileNameGet, TServerDiskLogConfig

196 DSCIO DLL Programmer’s Interface

DscSlaveCount

The DscSTaveCount function returns the number of slaves attached to a Master
iDSC board. It is only useful in a Master/Slave Configuration.

int __stdcall DscSlaveCount(
HDSC hDscMaster /I Master iDSC board handle.

)

Parameters
hDscMaster

Handle of the Master iDSC board.

Return Values
If the function succeeds, the return value is the number of slaves. If the function
fails, the return value is -1.

If there are no slaves attached to the master, the return value is 0. If
DscSlaveCount is invoked on a Slave or Normal iDSC board the return value is
also 0.

Remarks
DscSTaveCount should only be called on a Master iDSC board. It returns the slave
count, and not the slave index, of a Master iDSC board. For example, if the slave
count is 1, then the slave index is 0. The slave index in used in the
DscSlaveHand1e function.

See Also
DscMasterGet, DscMasterSet

DSCIO DLL Programmer’s Interface 197

DscSlaveHandle

The DscSlaveHandle function returns the handle of a Slave iDSC board that is
attached to a Master iDSC board, given a slave index. It is only useful in a
Master/Slave Configuration.

HDSC __stdcall DscSlaveHandle(

HDSC hDscMaster, /I Master iDSC board handle.
int 7STavelndex /I Slave index.
)
Parameters
hDscMaster

Handle of the Master iDSC board.

iSTavelndex
Slave index of interest. Valid slave indices are 0 through DscSTaveCount - 1.

Return Values
If the function succeeds, the return value is the Slave iDSC board handle for the
given slave index. If the function fails, the return value is a NULL handle (of value

0).

Remarks
DscSTaveHand1e should only be called on a Master iDSC board. When passed a
valid slave index, it returns the corresponding slave handle connected to the Master
iDSC board.

Valid slave indices are 0 through DscSTaveCount - 1. To get the handles of all
slaves attached to a Master iDSC board, the user could use a for loop that goes
from 0 to DscSTaveCount - 1.

The function will fail if DscSTaveHand1e is invoked on a Slave or Normal iDSC
board or if the user passes an invalid slave index to DscS1aveHandle.

See Also
DscMasterGet, DscMasterSet

198 DSCIO DLL Programmer’s Interface

DscStartAcquiring

The DscStartAcquiring function starts the data acquiring process. Data will start
showing up at the PC.

int __stdcall DscStartAcquiring(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscStartAcquiring starts the sampling process, which causes data to start
showing up at the PC. DscStartAcquiring will force a DscCalibrate ifit
cannot find the saved calibration values, and a DscCommands Load if the iDSC
board configuration or filter designs have changed. If the iDSC board configuration
or filter designs have changed, the user may see a delay of two times
DscGroupDelay seconds.

Once DscStartAcquiring is invoked, the user can use DscBufferGetEx to read
blocks of data into buffers.

See Also
DscBufferGetEx, DscCalibrate, DscCommandsLoad, DscStopAcquiring

DSCIO DLL Programmer’s Interface 199

DscStopAcquiring

The DscStopAcquiring function stops the data acquiring process. Data will stop
showing up at the PC.

int __stdcall DscStopAcquiring(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscStopAcquiring stops the sampling process. It is called after
DscStartAcquiring to stop data from showing up at the PC.

See Also
DscStartAcquiring

200 DSCIO DLL Programmer’s Interface

DscStructPrepare

The DscStructPrepare function prepares structures for use with functions.

int __stdcall DscStructPrepare(

void *pvStruct, /I Address of structure to initialize.
unsigned long u/S7ze I Size of structure.
);
Parameters
pvStruct

Pointer to structure.

ulSize
Size of structure.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscStructPrepare initializes the i InfoS1ize field and zeroes out all other fields
of structures. It should be used with structures that have an i InfoSize field before
the other fields of the structures are initialized. Since DscStructPrepare
initializes the i InfoSize field, there is no need to initialize it separately.

See Also
TBufferGetEx, TFilterParam, TXbPinConfig

DSCIO DLL Programmer’s Interface 201

DscSystemErrorProcess

The DscSystemErrorProcess function processes error messages from the iDSC.

int __stdcall DscSystemErrorProcess(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscSystemErrorProcess processes error messages from the iDSC if they exist,
and then invokes DscOnSystemErrorSet. DscSystemErrorProcess is
automatically invoked by DscBufferGetEx. The user can also call
DscSystemErrorProcess and invoke DscOnSystemErrorSet if errors from the
iDSC are suspected.

See Also
DscOnSystemErrorSet

202 DSCIO DLL Programmer’s Interface

DscTcEnabledCount

The DscTcEnabledCount function returns the number of enabled timing channels on
the iDSC board.

int __stdcall DscTcEnabledCount(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the number of enabled timing channels.
If the function fails, the return value is -1.

Remarks
DscTcEnabledCount returns the number of enabled timing channels on the iDSC
board. It is related to the DscTcEnabledGet and DscTcEnabTedSet functions.
Valid values for the enabled timing channel count are in the range zero to two.

See Also
DscTcEnabledGet, DscTcEnabledSet

DSCIO DLL Programmer’s Interface 203

DscTcEnabledGet

The DscTcEnabledGet function gets the enabled timing channels on the iDSC
board.

int __stdcall DscTcEnabledGet(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the enabled timing channels. If the
function fails, the return value is -1.

Remarks
DscTcEnabledGet returns the enabled timing channels as an integer value. Only
the lowest three bits (bit 0 through bit 2) are used since there are a total of three
timing channel options, Tc@ (Timing Channel 0), Tc1l (Timing Channel 1), and
TcWidth32 (32-bit width). Tc@ is bit 0, Tc1 is bit 1, and TcWidth32 is bit 2 of the
returned integer value.

When the timing channels are enabled, the corresponding bits are set. When the
timing channels are disabled, the corresponding bits are cleared. To find out the
number of enabled timing channels, use the DscTcEnabledCount function.

See Also
DscTcEnabledCount, DscTcEnabledSet, DscTcMaximum, DscTcWidth

204 DSCIO DLL Programmer’s Interface

DscTcEnabledSet

The DscTcEnabTledSet function sets the enabled timing channels on the iDSC board.

int __stdcall DscTcEnabledSet(

HDSC hDsc, /I iDSC board handle.
int i7cEnabled /I Timing channels to enable.
);
Parameters
hDsc
Handle of the iDSC board.

iTcEnabled
Timing channels to enable.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscTcEnabledSet enables or disables the timing channels using the 7 TcEnabled
integer value. Only the lowest three bits (bit 0 through bit 2) are used since there are
a total of three timing channel options, Tc® (Timing Channel 0), Tc1 (Timing
Channel 1), and TcWidth32 (32-bit width). Tc0 is bit 0, Tc1 is bit 1, and
TcWidth32 isbit2 of iTcEnabled.

When the timing channels are enabled, the corresponding bits are set. When the
timing channels are disabled, the corresponding bits are cleared. To find out the
number of enabled timing channels, use the DscTcEnabledCount function.

Tc0 enables Timing Channel 0 and Tc1 enables Timing Channel 1. TcWidth32
forces the timing channel width to be 4 bytes (32-bits) regardless of the sample rate.
If TcWidth32 is not enabled, the timing channel width can be either 2 bytes or 4
bytes depending on the sample rate. To find out the actual timing channel width, use
the DscTcWidth function.

The constants below simplify enabling the timing channels.

DscTc_Tc®@, DscTc_Tcl, DscTc_TcWidth3?

DSCIO DLL Programmer’s Interface 205

The following example is used to enable Timing Channel 1 with 4 bytes for the
timing channel width.

DscTcEnabledSet(hDsc, DscTc_Tcl|DscTc_TcWidth32);

See Also
DscTcEnabledCount, DscTcEnabledGet, DscTcMaximum, DscTcWidth

206 DSCIO DLL Programmer’s Interface

DscTcMaximum

The DscTcMaximum function returns the maximum timing channel value based on the
sample rate.

int __stdcall DscTcMaximum(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the maximum timing channel value. If
the function fails, the return value is 0.

Remarks
DscTcMaximum returns the maximum timing channel value which is dependent on
the sample rate. DscTcMaximum can range from 128 to 2457600. The wide range of
DscTcMaximum forces DscTcWidth to be either 2 bytes or 4 bytes.

See Also
DscTcEnabledGet, DscTcEnabledSet, DscTcWidth

DSCIO DLL Programmer’s Interface 207

DscTcWidth

The DscTcWidth function returns the width, in bytes, of timing channel values.

int __stdcall DscTcWidth(
HDSC hDsc // iDSC board handle.

)

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the timing channel width. If the function
fails, the return value is 0.

Remarks
DscTcWidth returns the width, in bytes, of timing channel values. It returns either 2
for 16-bit values or 4 for 32-bit values.

DscTcWidth is dependent on the sample rate. The timing channel width for sample
rates 8 s/s to 600 s/s are always 4 bytes. The timing channel width for sample rates
640 s/s to 153600 s/s are 2 bytes by default. The timing channel width for these
higher sample rates can be forced to 4 bytes by setting TcWidth32 in the
DscTcEnabledSet function.

See Also
DscTcMaximum, DscTcEnabledGet, DscTcEnabledSet

208 DSCIO DLL Programmer’s Interface

DscTransferFunctionGet

The DscTransferFunctionGet function is used to plot the filter response.

int __stdcall DscTransferFunctionGet(

HDSC hDsc, /I iDSC board handle.
int 7Filterindex, /I Filter index.
int 7Length, // Number of data points.
double *pdBuffer // Buffer to receive data.
);

Parameters

hDsc

Handle of the iDSC board.

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

ilLength
Number of data points to return.

pdBuffer
Buffer for storing the transfer function data points. The buffer must be large
enough to accommodate the requested 7Length data points.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscTransferFunctionGet plots the filter responses of the filter designs. There
can be up to eight filter response plots since there are up to eight filter designs.

See Also
DscUnitSteplLengthGet, DscUnitStepGet

DSCIO DLL Programmer’s Interface 209

DscUnitStepGet

The DscUnitStepGet function plots the unit step responses of the filter designs.

int __stdcall DscUnitStepGet(

HDSC hDsc, /I iDSC board handle.
int 7Filterindex, /I Filter index.
int 7Length, // Number of data points.
double *pdBuffer /I Buffer to receive data.
);

Parameters

hDsc

Handle of the iDSC board.

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

ilLength
Number of data points to return.

pdBuffer
Buffer for storing the unit step data points. The buffer must be large enough to
accommodate the requested 7/ ength data points.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscUnitStepGet plots the unit step responses of the filter designs. The
DscUnitSteplLengthGet function should be used to determine the 7Length
parameter. There can be up to eight unit step response plots since there are up to
eight filter designs.

See Also
DscTransferFunctionGet, DscUnitStepLengthGet

210 DSCIO DLL Programmer’s Interface

DscUnitStepLengthGet

The DscUnitSteplLengthGet function returns the number of data points in the unit
step response.

int __stdcall DscUnitStepLengthGet(

HDSC hDsc, /I iDSC board handle.
int 7Filterindex /I Filter index.
)
Parameters
hDsc
Handle of the iDSC board.

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

Return Values
If the function succeeds, the return value is the number of data points. If the function
fails, the return value is 0.

Remarks
DscUnitSteplLengthGet returns the number of data points in the unit step
response. The function should be used to determine the 7/ ength parameter of
DscUnitStepGet.

See Also
DscTransferFunctionGet, DscUnitStepGet

DSCIO DLL Programmer’s Interface 211

DscXbCalibrate

The DscXbCalibrate function performs calibration on the external board.

int __stdcall DscXbCalibrate(
HDSC hDsc // iDSC board handle.
int 7SampleRate /I Sample rate to use for calibration.

)

Parameters
hDsc
Handle of the iDSC board.

iSampleRate
Sample rate to use for external board calibration. A sample rate of 100 s/s is
recommended.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscXbCalibrate is used to calibrate the external board. It is advisable to not
exceed a sample rate of 1024 s/s or the calibration values may be unstable.
DscXbCalibrate works only if DscXbEnabledGet is true, otherwise a failure
occurs.

A higher sample rate allows DscXbCalibrate to execute faster but the calibration
values are less accurate. A lower sample rate executes slower but the calibration
values are more accurate. The recommended value of 100 s/s works well.

DscXbCalibrate is not automatically invoked if the external board calibration
values are not found. The user has to explicitly call DscXbCalibrate to calibrate
the external board.

See Also
DscXbEnabledGet, DscXbEnabledSet

212 DSCIO DLL Programmer’s Interface

DscXbEnabledGet

The DscXbEnabTledGet function gets the state of the external board.

int __stdcall DscXbEnabledGet(
HDSC hDsc /I iDSC board handle.

)

Parameters
hDsc
Handle of the iDSC board.

Return Values
If the function succeeds, the return value is 0 for disabled and 1 for enabled. If the
function fails, the return value is -1.

Remarks
DscXbEnabledGet returns the state of the external board, whether enabled or
disabled. If DscXbEnab1edGet is 0, the external board is disabled and not visible
in DscConfigDialogShow. If DscXbEnabledGet is 1, the external board is
enabled and visible in DscConfigDialogShow.

See Also
DscXbEnabledSet

DSCIO DLL Programmer’s Interface 213

DscXbEnabledSet

The DscXbEnabledSet function sets the external board state.

int __stdcall DscXbEnabledSet(
HDSC hDsc, /I iDSC board handle.

int 7 XbEnabled /I External board state.
)

Parameters
hDsc
Handle of the iDSC board.

iXbEnabled
External board state, whether enabled or disabled.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscXbEnabledSet sets the external board state, whether enabled or disabled. If

iXbEnabled is 0, the external board is disabled and not visible in
DscConfigDialogShow. If iXbEnabled is 1, the external board is enabled and

visible in DscConfigDialogShow.

To access the external board, i XbEnab1ed must be 1 so that the configuration
information is sent to the external board. Also DscXbCalibrate will work only if
iXbEnabled is true.

See Also
DscXbEnabledGet, DscXbCalibrate

214 DSCIO DLL Programmer’s Interface

DscXbPinConfigGet

The DscXbPinConfigGet function gets the external board pin configuration
associated with a pin index. The pin configuration includes the input type, input range,
input offset, input offset range, and output excitation.

int __stdcall DscXbPinConfigGet(
HDSC hDsc, /I iDSC board handle.

int 7Pinindex, /I Pin index.
TXbPinConfig *pXbPinConfig /I Address of structure.

);

Parameters
hDsc
Handle of the iDSC board.

iPinlndex
Pin index of interest. Valid pin indices are 0 through 7.

pXbPinConfig
Pointer to a TXbPinConfig structure that receives the pin configuration.
TXbPinConfig must be initialized using DscStructPrepare.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscXbPinConfigGet returns the pin configuration for an associated pin index in

the TXbPinConf1ig structure. TXbPinConfig must be initialized using
DscStructPrepare before invoking DscXbPinConfigGet or the function will
fail.

Valid pin indices are 0 through 7. If the pin index is invalid, the function will fail.

See Also
DscConfigDialogShow, DscXbPinConfigSet, TXbPinConfig

DSCIO DLL Programmer’s Interface 215

DscXbPinConfigSet

The DscXbPinConfigSet function sets the pin configuration associated with a pin
index. The pin configuration includes the input type, input range, input offset, input
offset range, and output excitation.

int __stdcall DscXbPinConfigSet(
HDSC hDsc, /I iDSC board handle.

int 7Pinindex, /I Pin index.
const TXbPinConfig *pXbPinConfig /I Address of structure.

)

Parameters
hDsc
Handle of the iDSC board.

iPinlndex
Pin index of interest. Valid pin indices are 0 through 7.

pXbPinConfig
Pointer to a TXbPinConf1ig structure that passes the pin configuration.
TXbPinConfig must be initialized using DscStructPrepare.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0.

Remarks
DscXbPinConfigSet modifies the pin configuration for an associated pin index
through the TXbPinConf1ig structure. TXbPinConf1ig must be initialized using
DscStructPrepare before invoking DscXbPinConfigSet or the function will
fail.

The 7InputType, finputRange, fInputOffset,and fOutputExcitation
members must be set to the new desired values. fInput0ffsetRange cannot be set
since it is a read only property. Note that the pin configuration can be graphically set
in DscConfigDialogShow.

Valid pin indices are 0 through 7. If the pin index is invalid, the function will fail.

216 DSCIO DLL Programmer’s Interface

See Also
DscConfigDialogShow, DscXbPinConfigGet, TXbPinConfig

DSCIO DLL Programmer’s Interface 217

DscGroupAddOne

The DscGroupAddOne function adds one iDSC to the iDSC group.

int __stdcall DscGroupAddOne(
HDSCGROUP hDscGroup, // iDSC group handle.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.

Return Values
If the function succeeds, the return value is the index of the added iDSC. If the
function fails, the return value is -1.

Remarks
DscGroupAddOne adds one iDSC to the iDSC group and returns the index of the
added iDSC. The index of the iDSC is the DscGroupCount minus one. The
maximum number of iDSCs in the iDSC group is 64 which means that the maximum
index is 63. When DscGroupAddOne is invoked, the DscGroupCount increases by
one.

As an example, DscGroupAddOne returns 3. Therefore, the newly added iDSC
index is 3 and the DscGroupCount is 4.

See Also
DscGroupDeleteOne, DscGroupCount

218 DSCIO DLL Programmer’s Interface

DscGroupConfigDialogShow

The DscGroupConfigDialogShow function displays modal dialog screens for
graphical configuration of multiple iDSC boards.

int __stdcall DscGroupConfigDialogShow(
HDSCGROUP hDscGroup, // iDSC group handle.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.

Return Values
If the user selects the OK button, the return value is IDOK (of value 1). If the user
selects the Cancel button, the return value is IDCANCEL (of value 2). If the
function fails, the return value is 0.

Remarks
DscGroupConfigDialogShow simplifies the configuration of multiple iDSC
boards with a graphical interface. When the user expands the iDSC Boards tree,
there are options for changing the Address and Mode. When the user selects the
DSC name with the right click button, there are several more options like External
Board Calibrate, External Board Enable, Raw Data, Remote Master,
Server Disk Log,and Copy and Paste. The Copy and Paste feature allows the
user to copy the entire configuration of an iDSC board to another iDSC board.

For each iDSC board, the Input Screen provides a quick method for selecting the
sample rate, selecting the input range, mapping the input pins to selected filter
designs, and enabling or disabling the input pins.

The Filter Design Screen allows easy manipulation of filter parameters like
sharpness, low cutoff frequency, low cutoff slope, high cutoff frequency, high cutoff
slope, and attenuation, either by entering a valid number or by adjusting a slider.
When the user selects the right click button, there are several more options like
Crosshair Track,Y Display (linear, linear zoom, log, log zoom, and unit step),
Defaults Load, Copy, and Paste. The Copy (Ctr1-C)and Paste (Ctrl-V)
feature copies the filter parameters from one filter design tab to another.

DSCIO DLL Programmer’s Interface 219

The figure below displays the configuration of a group of four iDSC boards. DSCO
and DSC1 are configured as Independent, while DSC2 is the Master of DSC3.

i Configuration: DSC2

fa e
B
B
BT R
I T
fa s
BT
B

(S A B B VB B |

See Also
DscGroupAddOne, DscGroupDeleteOne, DscGroupCount

220 DSCIO DLL Programmer’s Interface

DscGroupConfigRead

The DscGroupConfigRead function reads iDSC group information from memory.

int __stdcall DscGroupConfigRead(

HDSCGROUP hDscGroup, // iDSC group handle.
int 1S7ze, /I Size of memory allocated.
void *pvBuffer // Pointer to memory buffer.
);
Parameters
hDscGroup

Handle of the group of iDSC boards.

iSize
Size of the memory buffer for the iDSC group information. The memory buffer is
allocated by the application.

pvBuffer
Pointer to the memory buffer that stores the iDSC group information. The
memory buffer is allocated by the application.

Return Values
If the function succeeds, the return value is the number of bytes read from memory.
If the function fails, the return value is 0.

Remarks
DscGroupConfigRead reads iDSC group information in binary format from
memory. The information in memory is probably retrieved from a disk file.

The iDSC group information read includes the number of iDSCs boards, address,
mode, sample rate, input range, input pin to filter mappings, enabled input pins, and
details of the filter designs.

1S1ze is the value that was previously used as the 757 ze parameter of
DscGroupConfigWrite when the iDSC group information was stored to memory.
The user cannot use DscGroupConfigWriteSize for 71Sizein
DscGroupConfigRead because it will not return the correct size.
DscGroupConfigWriteSize is provided only for the DscGroupConfigWrite
operation.

DSCIO DLL Programmer’s Interface 221

See Also
DscGroupConfigWrite, DscGroupConfigWriteSize

222 DSCIO DLL Programmer’s Interface

DscGroupConfigWrite

The DscGroupConfigWrite function writes iDSC group information to memory.

int __stdcall DscGroupConfigWrite(
HDSCGROUP hDscGroup, // iDSC group handle.
int 1S7ze, /I Size of memory allocated.
void *pvBuffer // Pointer to memory buffer.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.
iSize
Size of the memory buffer for the iDSC group information. The memory buffer is
allocated by the application.

pvBuffer
Pointer to the memory buffer that stores the iDSC group information. The
memory buffer is allocated by the application.

Return Values
If the function succeeds, the return value is the number of bytes written to memory.
If the function fails, the return value is 0.

Remarks
DscGroupConfigWrite writes iDSC group information in binary format to
memory. The information in memory can then be written to a disk file.

The iDSC group information written includes the number of iDSCs boards, address,
mode, sample rate, input range, input pin to filter mappings, enabled input pins, and
details of the filter designs.

1S17zeis the size of the memory buffer allocated and must be at least
DscGroupConfigWriteSize. 7S7ze should be stored by the program to be used
later as the 757 ze parameter of DscGroupConfigRead.

DSCIO DLL Programmer’s Interface 223

See Also
DscGroupConfigRead, DscGroupConfigWriteSize

224 DSCIO DLL Programmer’s Interface

DscGroupConfigWriteSize

The DscGroupConfigWriteSize function returns the minimum number of bytes to
allocate for DscGroupConfigWrite.

int __stdcall DscGroupConfigWriteSize(
HDSCGROUP hDscGroup, // iDSC group handle.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.

Return Values
If the function succeeds, the return value is the minimum number of bytes to
allocate. If the function fails, the return value is 0.

Remarks
DscGroupConfigWriteSize must be used to determine the minimum number of
bytes to allocate for the 7S7ze parameter of DscGroupConfigWrite. It cannot be
used as the 757 ze parameter of DscGroupConfigRead .

See Also
DscGroupConfigWrite, DscGroupConfigRead

DSCIO DLL Programmer’s Interface 225

DscGroupCount

The DscGroupCount function returns the number of iDSCs in the iDSC group.

int __stdcall DscGroupCount(
HDSCGROUP hDscGroup, // iDSC group handle.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.

Return Values
If the function succeeds, the return value is the number iDSCs in the iDSC group. If
the function fails, the return value is -1.

Remarks
DscGroupCount returns the number of iDSCs in the iDSC group. DscGroupCount
increases by one when DscGroupAddOne is invoked and decreases by one when
DscGroupDeleteOne is invoked. The maximum number of iDSCs in the iDSC
group is 64.

See Also
DscGroupAddOne, DscGroupDeleteOne

226 DSCIO DLL Programmer’s Interface

DscGroupDeleteOne

The DscGroupDeleteOne function deletes one iDSC from the iDSC group.

int __stdcall DscGroupDeleteOne(
HDSCGROUP hDscGroup, // iDSC group handle.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscGroupDeleteOne deletes one iDSC from the iDSC group. The maximum
number of iDSCs in the iDSC group is 64. When DscGroupDeleteOne is invoked,
the DscGroupCount decreases by one.

See Also
DscGroupAddOne, DscGroupCount

DSCIO DLL Programmer’s Interface 227

DscGroupDsc

The DscGroupDsc function allows access to a specific iDSC board using the iDSC
index.

HDSC __stdcall DscGroupDsc(
HDSCGROUP hDscGroup, // iDSC group handle.
int 710Dscindex, /1 iDSC board index.

)

Parameters
hDscGroup
Handle of the group of iDSC boards.

iDsclIndex
iDSC board index of interest. Valid iDSC board indices are 0 through
DscGroupCount - 1.

Return Values
If the function succeeds, the return value is the iDSC board handle for the given
iDSC board index. If the function fails, the return value is a NULL handle (of value
0).

The iDSC board handle should not be stored, instead DscGroupDsc should be
called repeatedly to access a specific iDSC board.

Remarks
DscGroupDsc allows access to a specific iDSC board using the iDSC board index.
Valid iDSC board indices are 0 through DscGroupCount - 1.

The iDSC board handle should not be stored because it is destroyed and recreated in
functions like DscGroupConfigDialogShow, DscGroupDeleteOne,
DscGroupAddOne, etc. DscGroupDsc should be called repeatedly to access a
specific iDSC board.

See Also
DscGroupConfigDialogShow, DscGroupCount

228 DSCIO DLL Programmer’s Interface

DscGroupHandleClose

The DscGroupHandleClose function releases a handle previously opened with
DscGroupHandleOpen.

int __stdcall DscGroupHandleClose(
HDSCGROUP hDscGroup, // iDSC group handle to close.

)

Parameters
hDscGroup
Handle of the group of iDSC boards to close. It must be a handle previously
opened by DscGroupHandleOpen.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscGroupHandleClose terminates communication with the iDSC group.
DscGroupHandleClose is the last function called by any application ready to end
communication with the iDSC group. Once the iDSC group communication has
ended, the user can no longer access a specific iDSC board through DscGroupDsc.

See Also
DscGroupHandleOpen, DscGroupDsc

DSCIO DLL Programmer’s Interface 229

DscGroupHandleOpen

The DscGroupHandleOpen function returns a group handle to the target iDSC
group.

HDSCGROUP __stdcall DscGroupHandleOpen(
);

Return Values
If the function succeeds, the return value is an open handle to the specified target. If
the function fails, the return value is a NULL handle (of value 0).

Remarks
DscGroupHand1eOpen initiates communication with the iDSC group.
DscGroupHandleOpen is the first function called by any application ready to begin
communication with the iDSC group. It returns a group handle to the target iDSC
group.
A group handle is a 32-bit value that references the group of iDSC boards. This
handle is used in all DscGroupXxxx services to reference the appropriate iDSC
group.
Once the iDSC group communication has began, the user can access a specific iDSC
board through DscGroupDsc.

See Also
DscGroupHandleClose, DscGroupDsc

230 DSCIO DLL Programmer’s Interface

Obsolete Interface

The functions listed below are obsolete. They are discussed in greater detail in the
following pages.

Category Dsc Services

Custom command DscDap1CCDownloadGet

services DscDap1CCDownloadSet
DscDaplCCListGet
DscDaplCCListLengthGet
DscDapTCCListSet

DscDap1CCStackSizeGet
DscDap1CCStackSizeSet

DSCIO DLL Programmer’s Interface 231

DAPL Custom Command Support

Using the DAPL custom command interface

To define DAPL custom commands, the user should use DscDap1CCListSet. Each
line of the custom command list is a custom command filename. Once a single or a list
of custom commands have been defined for the iDSC using DscDap1CCListSet, the
custom commands will be downloaded to the iDSC when the user invokes
DscCommandsLoad or DscStartAcquiring if the download code in
DscDap1CCDownToadSet is set to enabled.

If the default stack size of 1024 bytes is not sufficient for the custom commands, the
user can change the stack size using DscDapl1CCStackSizeSet. The stack size
should only be changed after the custom commands have been defined using
DscDap1CCListSet but before DscCommandsLoad or DscStartAcquiring is
invoked.

If the wuser wants to retrieve the defined custom commands,
DscDap1CCListLengthGet along with DscDapl1CCListGet should be used
DscDap1CCDownloadGet is used to get the state of the download code.
DscDap1CCStackSizeGet is used to get the stack size of a custom command.

Below is a C/C++ example:

HDSC hDsc;
hDsc = DscHandleOpen(

"\\\\.\\Dap0"); // 0Open iDSC handTe.
DscDaplCCListSet(hDsc, // Define two custom

"c:\\tl.bin\r\n" // commands.

"c:\\t2.bin\r\n");
DscDaplCCStackSizeSet(hDsc, // Set tl.bin stack

0, 2048); // size to 2048 bytes.
DscDaplCCStackSizeSet(hDsc, // Set t2.bin stack

1, 2048); // size to 2048 bytes.
DscDaplCCDownloadSet(hDsc, 1); // Enable custom

// command download.

DscStartAcquiring(hDsc); // Send custom command

// Tist to iDSC.
//... (other function calls)

232 DSCIO DLL Programmer’s Interface

DscDaplCCDownloadGet

The DscDapl1CCDownloadGet function gets the download code that indicates if
downloading the DAPL custom command list is enabled or disabled.

int __stdcall DscDaplCCDownloadGet(
HDSC hDsc // iDSC board handle.

);

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the download code. The download code
is 0 if downloading the custom command list is disabled and 1 if downloading the
custom command list is enabled. If the function fails, the return value is -1.

Remarks

DscDap1CCDownloadGet returns the download code that indicates if downloading
the DAPL custom command list is enabled or disabled.

If the download code is enabled, the DAPL custom command list is downloaded to the
iDSC when the user invokes DscCommandsLoad or DscStartAccquiring. If the
download code is disabled, the DAPL custom command list is not downloaded to the
iDSC.

The user should only have to download the DAPL custom command list to the iDSC
once at startup.

See Also
DscDap1CCDownloadSet

DSCIO DLL Programmer’s Interface 233

DscDaplCCDownloadSet

The DscDaplCCDownloadSet function sets the download code that indicates if
downloading the DAPL custom command list is enabled or disabled.

int __stdcall DscDaplCCDownloadSet(
HDSC hDsc, /I iDSC board handle.
int 1Download // Download code.

);

Parameters
hDsc

Handle of the iDSC board.

iDownload
Download code. Set it to 0 to disable downloading or 1 to enable downloading.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks

DscDapT1CCDownloadSet sets the download code that indicates if downloading the
DAPL custom command list is enabled or disabled.

If the download code is enabled, the DAPL custom command list is downloaded to the
iDSC when the user invokes DscCommandsLoad or DscStartAccquiring. If the
download code is disabled, the DAPL custom command list is not downloaded to the
iDSC.

The user should only have to download the DAPL custom command list to the iDSC
once at startup.

See Also
DscDap1CCDownloadGet

234 DSCIO DLL Programmer’s Interface

DscDapICCListGet

The DscDap1CCListGet function gets the DAPL custom command list defined for
the iDSC.

int __stdcall DscDapICCListGet(
HDSC hDsc, /I iDSC board handle.
int /1S7ze, /I Size of pszCCL17st buffer.
const char *pszCCList /I Pointer to buffer of characters.

)

Parameters
hDsc

Handle of the iDSC board.

iSize
Size of the pszCCL7st buffer for the DAPL custom command list. The buffer is
allocated by the application.

pszCCList
Pointer to a buffer that stores the DAPL custom command list. The buffer is
allocated by the application.

Return Values
If the function succeeds, the return value is the length of the string. If the function
fails, the return value is -1.

Remarks
DscDap1CCListGet returns the DAPL custom command list defined for the iDSC.
Each custom command in the list is delimited by a carriage-return and line-feed.

The DAPL custom command list is sent to the iDSC when the user invokes
DscCommandslLoad orDscStartAcquiring if the download code in
DscDap1CCDownToadSet is enabled.

See Also
DscDap1CCListLengthGet, DscDap1CCListSet

DSCIO DLL Programmer’s Interface 235

DscDapICCListLengthGet

The DscDaplCCListLengthGet function gets the length of the DAPL custom
command list defined for the iDSC.

int __stdcall DscDaplICCListLengthGet(
HDSC hDsc // iDSC board handle.

);

Parameters
hDsc

Handle of the iDSC board.

Return Values
If the function succeeds, the return value is the length of the buffer for the DAPL
custom command list. If the function fails, the return value is 0.

Remarks
DscDap1CCListLengthGet returns the length of the buffer for the DAPL custom
command list defined for the iDSC. This includes an extra character at the end for
the null-terminator.

DscDap1CCListLengthGet allows the user to determine the size of buffer to
allocate when using the DscDap1CCListGet function.

See Also
DscDap1CCListGet, DscDap1CCListSet

236 DSCIO DLL Programmer’s Interface

DscDapICCListSet

The DscDap1CCListSet function defines the DAPL custom command list for the
iDSC.

int __stdcall DscDapICCListSet(
HDSC hDsc, /I iDSC board handle.
const char *pszCCList /I Custom command list.

)

Parameters
hDsc

Handle of the iDSC board.

pszCCList
Pointer to the DAPL custom command list.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is
0.

Remarks
DscDap1CCListSet allows the user to define a DAPL custom command list for the
iDSC. Each custom command in the list must be delimited by a carriage-return, line-
feed, or both.

The DAPL custom command list is sent to the iDSC when the user invokes
DscCommandsLoad or DscStartAcquiring if the download code in
DscDap1CCDownToadSet is enabled.

See Also
DscDapTCCListGet

DSCIO DLL Programmer’s Interface 237

DscDaplCCStackSizeGet

The DscDap1CCStackSizeGet function gets the stack size of the custom command
identified by an index.

int __stdcall DscDaplCCStackSizeGet(
HDSC hDsc, /I iDSC board handle.
int 7 Index /I Index of custom command.

)

Parameters
hDsc
Handle of the iDSC board.

iIndex
Index of the custom command. Valid numbers are from 0 to (n-1), where n is the
number of custom commands in the list.

Return Values
If the function succeeds, the return value is the stack size. If the function fails, the
return value is 0. The minimum value allowed for the stack size is 1024 bytes.

Remarks
DscDap1CCStackSizeGet returns the stack size of the custom command identified
by an index from the list of custom commands. If there is only one custom command
in the list, the index is 0.

See Also
DscDap1CCStackSizeSet

238 DSCIO DLL Programmer’s Interface

DscDaplCCStackSizeSet

The DscDap1CCStackSizeSet function sets the stack size of the custom command
identified by an index.

int __stdcall DscDaplCCStackSizeSet(
HDSC hDsc, /I iDSC board handle.
int 7 Index, /I Index of custom command.
int iStackSize // Stack size.

)

Parameters
hDsc
Handle of the iDSC board.

iIndex
Index of the custom command. Valid numbers are from 0 to (n-1), where n is the
number of custom commands in the list.

iStackSize
Stack size to set. The default is 1024.

Return Values
If the function succeeds, the return value is 1. If the function fails, the return value is

0. The minimum value allowed for the stack size is 1024 bytes.

Remarks
DscDap1CCStackSizeSet sets the stack size of the custom command identified by

an index from the list of custom commands. If there is only one custom command in
the list, the index is 0.

If the required stack size of the custom command is larger than 1024 bytes, the stack
size must be set after the DAPL custom command list has been defined using
DscDapT1CCListSet. The DAPL custom command list is then sent to the iDSC
with the new stack size when the user invokes DscCommandsLoad or
DscStartAcquiring if the download code in DscDap1CCDownloadSet is
enabled.

DSCIO DLL Programmer’s Interface 239

See Also
DscDap1CCStackSizeGet

240 DSCIO DLL Programmer’s Interface

10. DSC Component Programmer’s Interface

The Digital Signal Conditioning Board Component (DSCC) Programmer’s Interface
provides the link between an application and the iDSC board.

The DSCC interface supports the Delphi 5, Delphi 6, Delphi 7, C++Builder 5, and
C++Builder 6 development environments. When the DSC Component Library is
installed, the Dsc and DscGroup components will appear on the Microstar tab with
the label DSC and DSCs. Installing the Component Library describes installing the
DSC Component Library in detail.

The Object and Type Summary provides a summary of all of the objects and types.

The Property, Method, and Event Summary provides a summary of all of the
supported properties, methods, and events.

DSC Component Programmer’s Interface 241

DSCC Interface Examples

There are several examples located in the <InstallDir>\Examples\Pascal
directory for Delphi which demonstrate the use of the DSCC interface. Before running
the examples, verify that the iDSC board and iDSC board software are properly
installed by running DSCview. Exit DSCview before running the DSCC interface
examples.

BinLog.dpr

BinlLog.dpr shows how to log binary data to disk. It allows the user to design filters
and configure the iDSC board using the ConfigDialogShow method. When the
iDSC board is started, the selected log file is opened and data logging starts. When the
iDSC board is stopped, the selected log file is closed and data logging stops.

Dvm.dpr

Dvm.dpr shows how to display voltage measurements. It transfers blocks of data from
the iDSC board into a data buffer. It displays the Oth index from the data buffer,
assuming a 5V input signal.

Graph.dpr

Graph.dpr shows how to display data in a graph. It allows the user to design filters
and configure the iDSC board using the ConfigDialogShow method. When the
iDSC board is started, graphing starts. When the iDSC board is stopped, graphing
stops.

242 DSC Component Programmer’s Interface

Installing the Component Library

The DSC Component Library supports the Delphi and C++Builder development
environments. It consists of two components; the Dsc and DscGroup components.
The Dsc component configures a single DSC and the DscGroup component
configures multiple DSCs.

Before you install the DSC Component Library, make sure that you have installed the
Accel32/DAPcell server. The DAPIO32.DLL that is shipped with the
Accel32/DAPcell server is needed for the DSC Component Library installation.

Delphi 5, Delphi 6, Delphi 7
The following steps outline the process of incorporating the DSC Component Library
into Delphi 5, Delphi 6, and Delphi 7. It involves installing the design time package
and configuring the search path.
If you build with run time packages, copy DscLibXX.Xpl to your application
directory.

A. Installing the design time package

1) Select the Component|Install Packages... menu item.

2) Select Add. .., enter <InstallDir>\Comp\DelphiX\DsclLibXX.Xp]l
as the file name, and select Open.

<InstallDir> is the installation directory for the iDSC software.
\DelphiX\DscLibXX.Xpl is
\Delphib\DscLib5@.bp1 for Delphi 5,
\Delphi6\DscLib6@.bpl for Delphi 6,
\Delphi7\DscLib7@.bp1 for Delphi 7.

3) Select OK.

4) The Dsc and DscGroup components are available on the Microstar tab
of the component palette with the label DSC and DSCs.

B. Configuring the search path

DSC Component Programmer’s Interface 243

1) Select the Tools |Environment Options... menu item.

2) Selectthe Library tab, add <InstallDir>\Comp\DelphiX to the
library path, and select OK.

244 DSC Component Programmer’s Interface

C++Builder 5, C++Builder 6

The following steps outline the process of incorporating the DSC Component Library
into C++Builder 5 and C++Builder 6. It involves installing the design time package
and configuring the search path.

If you build with run time packages, copy DsclLibXX.bpl to your application
directory.

A. Installing the design time package

1) Select the Component|Install Packages... menu item.

2) Select Add. .., enter <InstallDir>\Comp\CBuildX\DscLibXX.bpT
as the file name, and select Open.

<InstallDir> is the installation directory for the iDSC software.
\CBuildX\DscLibXX.bpl is
\CBuiTdb\DsclLib50.bpl for C++Builder 5
\Cbuild6\DscLib6@.bp1 for C++Builder 6.

3) Select OK.

4) The Dsc and DscGroup components are available on the Microstar tab
of the component palette with the label DSC and DSCs.

B. Configuring the search path
1) Selectthe File|Close A1l menu item if any projects are opened.
2) Selectthe Tools|Environment Options... menu item.

3) Selectthe Library tab, add <InstallDir>\Comp\CBuiTdX to the
library path, and select OK.

DSC Component Programmer’s Interface 245

Creating a DSCC Interface Application

Before you create a DSCC Interface application, make sure that you have installed the
Accel32/DAPcell server. The DAPIO32.DLL that is shipped with the
Accel32/DAPcell server is needed for any application that uses the DSCC Interface.

The following steps describe the functions required for creating a simple application
with the DSCC interface using the Dsc component.

1) Select the Dsc component from the Microstar tab of the Component
Palette and drop the component onto the application form.

2) Configure the iDSC board at design time by selecting the ConfigDialog
property from the Object Inspector. This allows the user to set the sample
rate, enable/disable channels, design filters, etc. through a graphical
interface.

3) Start data acquisition by invoking the StartAcquiring method.

4) Get binary data from the iDSC board by invoking the BufferGetEx
method.

5) Stop data acquisition by invoking the StopAcqui ring method.

The steps above describe a complete application. To configure the iDSC board at run
time, the user must invoke the ConfigDialogShow method.

More complicated applications that use DAPL text and DAPL custom commands are
also available with the DSCIO interface.

246 DSC Component Programmer’s Interface

Universal Naming Convention

DSCC addresses the iDSC board using the Universal Naming Convention (UNC). A
UNC name consists of two parts, the machine name and the iDSC board name. A
UNC name begins with two backslashes, and the parts of the name are separated by a
single backslash as shown below.

\\<Machine name>\<iDSC board name>

A local machine is denoted by a period. A remote machine is represented by its unique
network machine name. Only the DAPcell implementation of the iDSC board supports
remote machine names. All other implementations support only local machine names.

iDSC board names are predefined as Dap@, Dapl, ..., Dap(N-1) where N is the
number of iDSC boards installed on the system. The maximum value for N is 14.

The UNC name is used with the Address property of the DSCC interface. Using
\\.\Dap® as an example, \\. denotes the local machine and \Dap® denotes the
name of the iDSC board. If connected to a remote machine through DAPcell named
PC45 that contains Dap®, then Address is \\PC45\Dap®.

DSC Component Programmer’s Interface 247

Master/Slave Configuration

To synchronize multiple iDSC boards on a system, you must designate one iDSC
board as a master unit and the other iDSC boards as slave units. From iDSC board
software, use the Master property to setup the Master/Slave Configuration. From
iDSC board hardware, use a special cable to setup the Master/Slave Configuration.

Since iDSC boards share a sampling clock, the special cable distributes the sampling
clock The Synchronization Connector is described in the Hardware Architecture
chapters of this document.

Apart from connecting the cable, one iDSC board has to be configured as a Master
iDSC board by using the Master property. Basically, setting up a Master or Slave
iDSC board means associating a slave to a master through this property.

The supported properties and methods for Master/Slave Configuration are listed
below.

Master property
OperateMode property
RemoteMaster property
SlaveCount property
SlaveName method

The master and slave units must use the same effective sample rate. Therefore, the
sample rate should only be changed on a Master iDSC board using the SampleRate
property. Changing the sample rate on a Slave iDSC board will have no effect. The
Slave iDSC board will continue using the sample rate of its master.

If two independent iDSC boards are running at different sample rates, and the user
decides to set up the iDSC boards in a Master/Slave configuration, the Slave iDSC
board will use the sample rate of the Master iDSC board.

In a Master/Slave Configuration, the system services listed below should only be
invoked on a Master iDSC board. If these methods are invoked on a Slave iDSC
board, there will be an exception.

Calibrate method
CommandsLoad method
StartAcquiring method
StopAcquiring method
XbCalibrate method

248 DSC Component Programmer’s Interface

ConfigDialogShow of TDscGroup allows easy graphical configuration of masters
and slaves.

DSC Component Programmer’s Interface 249

DAPL Support

Writing DAPL

The DSC system writes the filtered data to pipe pDscData for use in DAPL. Pipe
pDscData has interleaved data only from the enabled channels. Before the user can
perform further processing on the data, the SEPARATE command is recommended for
separating the data from pipe pDscData into the correct number of pipes. If the user
only has five channels enabled out of the maximum of eight, the user should separate
the interleaved data into five pipes. Once the user has completed processing the data,
the results must be merged to $BINQUT.

The restricted DAPL interface requires that input and output procedures, and START
and STOP commands, not be included in the DAPL listing. The iDSC can only be
started and stopped using the StartAcquiring and StopAcquiring methods.

The example below shows the form of the first few lines in DAPL. Pipe pDscData
has interleaved data from five enabled channels.

PIPES PO, P1, P2, P3, P4

PDEF A
SEPARATE(pDscData, PO, P1, P2, P3, P4)

...(further processing)

...(must write output to $BINOUT)
END

PO, P1, P2, P3, P4 are the number of enabled channels, which is five in this example.

Using the DAPL Interface

To write custom DAPL text, the user should use the Dap1Text property. Once the
DAPL text has been defined for the iDSC using Dap1Text, the DAPL text will be
sent to the iDSC when the user invokes CommandsLoad or StartAcquiring.

If the user wants to change the already defined DAPL text, the Dap1Text property
must be updated with the new DAPL text followed by either a CommandsLoad or
StartAcquiring to activate the new DAPL text.

250 DSC Component Programmer’s Interface

If the user wants to retrieve the defined DAPL text, invoke the Dap1Text property.
Below is a Delphi example, where Dscl of type TDsc is already on the form:

Dscl.DaplText.Text := // Define DAPL text.
‘PIPES PO, P1, P2, P3, P4’#13#10 +
‘PIPES RO, R1, R2, R3, R4’#13#10 +
‘PDEF A’#134#10 +

SEPARATE(pDscData, P@, P1, P2, P3, P4)’#13#10 +

FFT(5, 9, 4, PO, RO)’#13#10 +

FFT(5, 9, 4, P1, R1)’#13#10 +

FFT(5, 9, 4, P2, R2)’#13#10 +

FFT(5, 9, 4, P3, R3)’#13#10 +

FFT(5, 9, 4, P4, R4)’#13#10 +

MERGE(R@, R1, R2, R3, R4, $BINOUT) #13#10 +

END”;
Dscl.StartAcquiring; // Send DAPL text.
//... (other function calls)

DSC Component Programmer’s Interface 251

Object and Type Summary

Special objects and types are used to define some properties, methods, and events of
the DSCC interface. The special objects and types, and the properties and methods

they support are displayed below.
Object

TDsc object

TDscGroup object
TExternalBoard object
TFilterDesign object
TServerDiskLog object

Type

TBufferGetEx type
TDscloInt64 type
TFilterParam type
TServerDiskLogConfig type

TXbPinConfig type

252

Supports

iDSC Board, Master property
iDSC Board Group
ExternalBoard property
FilterDesign property
ServerDiskLog property

Supports

BufferGetEx method
ServerDiskLogBytes property
FilterParametersGet method
FilterParametersSet method
ServerDiskLogConfigGet method
ServerDiskLogConfigSet method
XbPinConfigGet method
XbPinConfigSet method

DSC Component Programmer’s Interface

TDsc object

The TDsc object defines the behavior of the iDSC board and the Master property.

Remarks

TDsc is the underlying object of the iDSC board. TDsc supports the properties,

methods, and events below.

Properties

Address property
BufferGetEnabTled property

ConfigDialogOptions property

Dap1Text property
ExternalBoard property
FilterDesign property
GroupDelay property
InputRange property
Master property
MemoryUsed property
OperateMode property
PinEnabled property
PinEnabledCount property
RemoteMaster property
Running property
SampTeRate property
ScansDiscarded property
ServerDiskLog property

ServerDiskLogBytes property
ServerDiskLogEnabled property

SlaveCount property
TcEnabled property
TcEnabledCount property
TcMaximum property
TcWidth property
XbEnab1ed property

Methods

BufferAvail method

DSC Component Programmer’s Interface

253

254

BufferGet method
BufferGetEx method
Calibrate method
CommandsLoad method
ConfigDialogShow method
HardwareStop method
SlaveName method
StartAcquiring method
StopAcquiring method
StructPrepare method
SystemErrorProcess method
XbCalibrate method

Events

OnCalibrateProgress event
OnHardwareDelayChange event
OnInputRangeUpdate event
OnPinEnabledUpdate event
OnSystemError event

DSC Component Programmer’s Interface

TDscGroup object

The TDscGroup object defines the behavior of the iDSC group.

Remarks
TDscGroup is the underlying object of the iDSC group. The iDSC group consists of

a list of iDSC boards that are of type TDsc. The specific iDSC board can be
accessed through the array property Dsc.

TDscGroup supports the properties, methods, and events below.

Properties

Count property
Dsc property

Methods

AddOne method
ConfigDialogShow method
DeleteOne method

Events

OnAfterNumDscChange event
OnBeforeNumDscChange event

DSC Component Programmer’s Interface 255

TExternalBoard object

The TExternalBoard object defines the behavior of the ExternalBoard property.

Remarks

TExternalBoard supports the properties and methods below.

Properties

InputOffset property
InputOffsetRange property
InputRange property
InputType property
OutputExcitation property

Methods

XbPinConfigGet method
XbPinConfigSet method

256

DSC Component Programmer’s Interface

TFilterDesign object

The TFilterDesign object defines the behavior of the FilterDesign property.

Remarks
TFilterDesign supports the properties and methods below.

Properties

Attenuation property
CutoffFreqHigh property
CutoffFreqlLow property
CutoffSTopeHigh property
CutoffSTopelow property
FilterName property
FilterType property
PinToFilterMap property
Sharpness property

Methods

FilterIndex method
FilterParametersGet method
FilterParametersSet method
TransferFunctionGet method
UnitStepGet method
UnitSteplLengthGet method

DSC Component Programmer’s Interface 257

TServerDiskLog object

The TServerDiskLog object defines the behavior of the ServerDisklLog property.

Remarks

TServerDiskLog supports the properties and methods below.

Properties

BlockSize property
FileFlagsAttributes property
FileName property
FileShareMode property

Flags property

MaxCount property

OpenFlags property

Methods

ServerDiskLogConfigGet method
ServerDiskLogConfigSet method

258

DSC Component Programmer’s Interface

TBufferGetEx type

The TBufferGetEx type defines the behavior of Buf ferGetEx.

Declaration
TBufferGetEx = packed record
7InfoSize: integer; /I Size of this record.
iMinBytes: integer; /I Minimum number of bytes to get.
iMaxBytes: integer; /l Maximum number of bytes to get.
iTimelWait: integer; /I Longest time to wait for data.
i TimeOut: integer; /I Longest total time for operation.
iBytesMultiple:integer; /I Bytes to get is a multiple of this.
end;
Members
iInfoSize

Size of this information record.

iMinBytes
Minimum number of bytes to get. It can be zero or any positive integer.

iMaxBytes
Maximum number of bytes to get. 7MaxBytes must be greater than or equal to
iMinBytes.

iTimeWait
Longest time in milliseconds that the get operation can be blocked waiting for
data. If no data shows up in that amount of time, the operation should be aborted.

iTimeOut
Longest time in milliseconds that the get operation should complete. If it fails to
complete in that amount of time, the operation is aborted. When this member is
specified, it takes precedence over 777imel/ait. This member is ignored if its
value is zero.

iBytesMultiple
The number of bytes to get is always a multiple of 1BytesMultiple.

Remarks
TBufferGetEx is used in BufferGetEx. TBufferGetEx should be initialized
using StructPrepare or BufferGetEx will fail.

DSC Component Programmer’s Interface 259

Each member of TBufferGetEx must be initialized to the appropriate value before
being passed to BufferGetEx. The member iM7inBytes must be greater than or
equal to zero, and the member 7MaxBytes must be greater than or equal to
iMinBytes. If iMinBytes is zero BufferGetEx will never block even when there
are no data available.

A zero value of 7BytesMultiple is treated the same as one. The value of
iBytesMultiple cannot be larger than the maximum pipe buffer size on the PC
side (converted to bytes) minus 1024, or minus the iDSC side blocking size
(converted to bytes), whichever is larger; otherwise, the first condition causes an
error. The second condition is not checked and may cause a deadlock. It is the
application's responsibility to guarantee that it never happens.

Both iMinBytes and iMaxBytes must be an integral multiple of the
iBytesMultiple value; otherwise, an error occurs.

See Also
BufferGetEx method, StructPrepare method

260 DSC Component Programmer’s Interface

TDscloInt64 type

The TDscloInt64 type defines the behavior of the ServerDiskLogBytes property
and the 764MaxCount parameter of TServerDiskLogConfig. TDsclolnt64
represents a 64-bit integer type.

Declaration
{$IFDEF DscloNolInt64}

TDsclolInt64 = packed record
dwlLowPart: DWORD; /I Low 32-bits of 64-bit integer type.
dwHighPart: DWORD; // High 32-bits of 64-bit integer type.
end;

{$ELSE}
TDscloInt64 = int64;
{$ENDIF}

Remarks
TDscloInt64 supports the Delphi 5, Delphi 6, and Delphi 7, and C++Builder 5, and
C++Builder 6 development environments.

Example
The following examples show how to initialize the 764MaxCount parameter of
TServerDiskLogConfig to a value of 4294967296. The first example is for
environments that support the int64 data type, while the second example is for
environments that do not support the int64 data type.

Dscl is of type TDsc.

// Example 1: int64 type is supported

var
sdlc: TServerDiskLogConfig;

begin
Dscl.StructPrepare(sdlic, SizeOf(sdlc));
sdlc.i64MaxCount := 4294967296;

end;

DSC Component Programmer’s Interface 261

// Example 2: int64 type is not supported

var
sdlc: TServerDiskLogConfig;

begin
Dscl.StructPrepare(sdlc, SizeOf(sdlc));
sdlc.i64MaxCount.dwLowPart := 0;
sdlc.i64MaxCount.dwHighPart := 1;

end;

See Also
TServerDiskLogConfig type, ServerDiskLogBytes property

262 DSC Component Programmer’s Interface

TFilterParam type

The TFilterParam type defines the behavior of the FilterParametersGet
method and FilterParametersSet method.

Declaration
TFilterParam = packed record
7InfoSize: integer; /I Size of this record.
achName :array[0..63] of char; /I Filter name.
iFilterType: integer; /I Filter type.
iSharpness: integer; /I Filter sharpness.
fCutoffFreqglow:single; /I Filter low cutoff frequency.
fCutoffSlopelow:single; /I Filter low cutoff slope.
fCutoffFregHigh:single; /I Filter high cutoff frequency.
fCutoffSlopeHigh:single; /I Filter high cutoff slope.
fAttenuation:single; /I Filter attenuation.
end;
Members
iInfoSize

Size of this information record.

achName
Name of the filter. The name is restricted to 63 characters plus one null-
terminated character. The default is FD@, FD1, FD2, FD3, FD4, FD5, FD6, and FD7
for each of the eight filters.

iFilterType
Type of the filter, either lowpass or bandpass. These constants simplify selecting
the filter type: Dsc_LowPass, Dsc_BandPass. The default is lowpass.

iSharpness
Sharpness of the filter specified as an odd number. Valid numbers are in the range
37 to 255, depending on the sample rate.

The default is 37 for sample rate 153600 s/s, 119 for sample rate 102400 s/s, 95
for sample rate 76800 s/s, 195 for sample rates of 51200 s/s, 10240 s/s, 2048 s/s,
and 1024 s/s and 137 for all other sample rates.

fCutoffFreglLow
Low cutoff frequency of the filter specified in Hertz. Valid numbers are in the
range 2% to 80% of the Nyquist frequency (0.02 * Nyquist frequency to 0.8 *

DSC Component Programmer’s Interface 263

Nyquist frequency). The Nyquist frequency is half the sample rate. The default is
half the Nyquist frequency.

fCutoffSlopelow

Low cutoff slope of the filter specified as a fraction of the Nyquist frequency,
with the Nyquist frequency normalized to 1.0. Valid numbers are in the range 0.0
to 0.8. 0.0 corresponds to 0% of the Nyquist frequency and 0.8 corresponds to
80% of the Nyquist frequency. The Nyquist frequency is half the sample rate.

The default is 0.0 for sample rates of 153600 s/s, 102400 s/s, 51200 s/s, 10240
s/s, 2048 s/s, and 1024 s/s and 0.04 for all other sample rates.

fCutoffFregHigh

High cutoff frequency of the filter specified in Hertz. Valid numbers are in the
range 2% to 80% of the Nyquist frequency (0.02 * Nyquist frequency to 0.8 *
Nyquist frequency). The Nyquist frequency is half the sample rate. The default is
three-quarters the Nyquist frequency.

fCutoffSlopeHigh

High cutoff slope of the filter specified as a fraction of the Nyquist frequency,
with the Nyquist frequency normalized to 1.0. Valid numbers are in the range 0.0
to 0.8. 0.0 corresponds to 0% of the Nyquist frequency and 0.8 corresponds to
80% of the Nyquist frequency. The Nyquist frequency is half the sample rate.

The default is 0.0 for sample rates of 153600 s/s, 102400 s/s, 51200 s/s, 10240
s/s, 2048 s/s, and 1024 s/s and 0.04 for all other sample rates.

fAttenuation

Attenuation of the filter in the stopband region. Valid numbers are in the range
6.0 to 12.0. The larger the number, the more attenuation in the stopband, but this
will further attenuate the frequencies near cutoff.

The default is 10.2 for sample rate 153600 s/s, 9.4 for sample rate 76800 s/s, 9.8
for sample rates of 102400 s/s, 51200 s/s, 10240 s/s, 2048 s/s, and 1024 s/s and
9.0 for all other sample rates.

Remarks
TFilterParamisused in FilterParametersGet and FilterParametersSet.

TFilterParam should be initialized using StructPrepare or both methods will
fail.

FilterParametersGet will return the filter parameters in the 7 Sharpness,
fCutoffFreqglLow, fCutoffSlopelow, fCutoffFregHigh,
fCutoffSlopeHigh, and fAttenuation members.

264

DSC Component Programmer’s Interface

Before invoking FilterParametersSet, the user must set the 7 Sharpness,
fCutoffFreqglLow, fCutoffSlopelow, fCutoffFregHigh,
fCutoffSlopeHigh,and fAttenuation members to the new desired values.

See Also
FilterParametersGet method, FilterParametersSet method,
StructPrepare method

DSC Component Programmer’s Interface 265

TServerDiskLogConfig type

The TServerDiskLogConfig type defines the behavior
ServerDiskLogConfigGet and ServerDiskLogConfigSet.

Declaration
TServerDiskLogConfig = packed record
7InfoSize: integer; /I Size of this record.
dwflags: DWORD; /I Logging behavior flags.
pszFileName: PChar; /I File name.
dwfFileNameSize: DWORD; /I Size of file name.
dwfFileShareMode: DWORD; /I File share properties.
dwOpenflags: DWORD; /I File open options.
dwfFileFlagsAttributes: DWORD; /I File attributes.
dwBlockSize: DWORD; /I Size of block to write.
i64MaxCount: TDscloInt64; /I File maximum count.
end;
Members
iInfoSize

Size of this information record.

dwfFlags
Flags to control disk logging behavior. The constants below simplify selecting
dwFlags. The defaultis DscD1fServerSide and DscDI1fFlushBefore.

DscD1fServerSide
Log on the same side of the network connection as the iDSC. If not
specified, logging will take place on the application (client) side of the
network connection.

DscD1fFlushBefore
Flush the input data pipe before beginning the logging session. Default
action is to not flush the pipes before logging.

DscD1fFlushAfter
Flush the input pipe after the logging session has terminated. Default
action is to not flush the pipes after logging.

DscDI1fMirrorlLog
Enable mirror logging. Mirror logging creates a copy of the logged data
in another file.

of

266 DSC Component Programmer’s Interface

DscD1fAppendData
Allow new data to be appended to an existing file. Only the
DscOfOpenAlways and DscOfOpenExisting flags of the dwOpenfilags
member can be used for appending.

DscD1fBlockTransfer
Open the file with no intermediate buffering or caching and access the file
in a special way that is highly dependent on the target disk attributes to
improve performance. This transfer mode adds overhead to slow rate
transfer with small buffers. It should only be used when necessary with a
very large dwBTockS7ze value (such as 1048576 and above). If this
option is selected, dwBTockS17ze is automatically set to 1048576.

pszFileName
Name of the primary disk log file and name of a possible mirror disk log file, if
mirror logging is enabled. The default is an empty string. The size of the user
allocated buffer must be specified using dwf 7 TeNameS1ize when used with
ServerDiskLogConfigGet.

Mirror logging is enabled by selecting the DscD1fMirrorlLog flag of the
dwF1ags member. Multiple file names are separated by semi-colons. Currently,
only one mirror file is allowed. Both files must be on the same side of the
DAPcell Local/DAPcell service (the PC application side or the iDSC side).

dwFileNameSize
Size of the user allocated buffer to store the file name specified by
pszFileName. The size must include an extra space for the null terminator. This
field is important in ServerDiskLogConfigGet. It is not used in
ServerDiskLogConfigSet.

If dwFileNameSizeis 0, the file name is not returned in pszFileName. If
dwFileNameSizeis 1, only the null terminator is returned in pszF7TeName.

dwFileShareMode
File share mode of the disk log file. The constants below simplify selecting
dwFileShareMode. The default is DscFsmRead.

DscFsmNone The file cannot be used by another process.
DscFsmRead The file can be read by another process.
DscFsmhrite The file can be written to by another process.

DscFsmReadWrite The file can be read and written to by another process.

dwOpenflags

File open options of the disk log file. The constants below simplify selecting
dwOpenflags. The default is DscOfCreateAlways.

DSC Component Programmer’s Interface 267

DscOfCreateNew Create a new file. Creation fails if the file
already exists.

DscOfCreateAlways Create a new file. If the file already exists, it
is overwritten.

DscOfOpenAlways Open an existing file. If the file does not exist,
it will be created.

DscOfOpenExisting Open an existing file without resetting
permissions. Opening fails if the file does
not exist.

dwFileFlagsAttributes
File attributes of the disk log file. The constants below simplify selecting
dwFileFlagsAttributes. The defaultis DscFfaAttributeNormal.

DscFfaAttributeNormal No special attributes.
DscFfaAttributeEncrypted The data in the file is encrypted.
DscFfaFlagWriteThrough Write through any intermediate caching
and go directly to disk.
DscFfaFlagSequentialScan Can be used to optimize the transfer of

large blocks of data. Most applications
will not need this flag.

dwBlockSize
Minimum amount of data, in bytes, to write to the disk log file at one time. This
field is provided for disk transfer optimization. The default is 8192.

164MaxCount
Maximum number of bytes to log. The default is 0, which causes logging to
continue indefinitely until StopAcquiringis invoked. Itisa TDscIoInt64
type.

Remarks
TServerDiskLogConfigisusedin ServerDiskLogConfigGet and
ServerDiskLogConfigSet. TServerDiskLogConf1ig should be initialized
using StructPrepare or both functions will fail.

ServerDiskLogConfigGet will return the server disk log configuration in the
dwFlags, pszFileName, dwFileShareMode, dwOpenFlags,
dwFilefFlagsAttributes, dwBlockSize,and 764MaxCount members of
TServerDiskLogConfig.

To use ServerDiskLogConfigSet it is recommended that the user invokes
ServerDiskLogConfigGet to get the server disk log configuration defaults,
updates the pertinent fields, and then invokes ServerDiskLogConfigSet.

268 DSC Component Programmer’s Interface

See Also
StructPrepare method, ServerDiskLogConfigGet method,
ServerDiskLogConfigSet method

DSC Component Programmer’s Interface 269

TXbPinConfig type

The TXbPinConfig type defines the behavior of the XbPinConfigGet method and
XbPinConfigSet method.

Declaration
TXbPinConfig = packed record
7InfoSize: integer; /I Size of this record.
TInputType:integer; /I Input type.
fInputRange: single; /I Input range voltage.
fInputOffset: single; /I Input offset voltage.
fInputOffsetRange: single; /I Input offset range voltage.
fOutputExcitation: single; /I Output excitation voltage.
end;
Members
iInfoSize

Size of this information record.

TInputType
Type of input signal, DC coupling, AC coupling or excitation. These constants
simplify selecting the input type: DscXb_DCCoupling, DscXb_ACCoupling,
DscXb_Excitation. The defaultis DscXb_DCCoupling.

fInputRange
Input range of the signal specified in Volts. Please note that this input range is
different from InputRange, and only works if InputRange is set to +/- 5V.

If you select 0.5 the input range is +/- 500 mV, if you select 2.0 the input range
+/- 2V. If you specify an invalid input range, the input range will not change from
its previous setting. The default is 10.0.

Valid input ranges are:
0.01, 0.02, 0.05,
0.1,0.2,0.5,

1.0, 2.0, 5.0,
10.0

fInputOffset
Input offset of the signal specified in Volts. The input offset must be within the
range of the input offset range. If you specify an invalid input offset, the input
offset will not change from its previous setting. The default is 0.0.

270 DSC Component Programmer’s Interface

fInputOffsetRange
Input offset range of the signal returned in Volts. The input offset range is
determined by the input range. For example, if the input range is 0.5 then the
input offset range is 2.5 for +/-2.5 V, if the input range is 2.0 then the input offset
range is 1.0 for +/- 1V. This is a read only property that is dependent on the input
range and you cannot specify it.

Valid input offset ranges are:

0.5 when the input range is 0.01
1.0 when the input range is 0.02
2.5 when the input range is 0.05
0.5 when the input range is 0.1
1.0 when the input range is 0.2
2.5 when the input range is 0.5
1.0 when the input range is 1.0
1.0 when the input range is 2.0
5.0 when the input range is 5.0

5.0 when the input range is 10.0

fOutputExcitation
Output excitation signal specified in Volts. If you specify an invalid output
excitation, the output excitation will not change from its previous setting. The
default is 0.0.

Valid output excitation ranges are:
0.0, 1.0, 2.0, 5.0, 10.0

Remarks
TXbPinConfigisusedin XbPinConfigGet and XbPinConfigSet.
TXbPinConfig should be initialized using StructPrepare or both functions will
fail.

XbPinConfigGet will return the pin configuration in the 7 InputType,
fInputRange, fInputOffset, fInputOffsetRange, and
fOutputExcitationmembers of TXbPinConfig.

Before invoking XbPinConfigSet, the 7 InputType, fInputRange,
fInputOffset,and fOutputExcitation members of TXbPinConfig must be
set to the new desired values. fInput0ffsetRange cannot be set since it is a read
only property.

See Also
StructPrepare method, XbPinConfigGet method, XbPinConfigSet method

DSC Component Programmer’s Interface 271

Property, Method, and Event Summary

The DSCC interface provides a complete set of properties, methods, and events for
communicating with the iDSC board. Each property, method, and event falls into one

of several categories.

Category

Graphical services

Filter design services

Communication services

I/0O services

System services

Master/slave services

272

TDsc Services

ConfigDialogOptions property
ConfigDialogShow method

FilterDesign property

Calibrate method
CommandsLoad method
StartAcquiring method
StopAcquiring method

BufferAvail method
BufferGet method
BufferGetEnabled property
BufferGetEx method

Address property
GroupDelay property
HardwareStop method
InputRange property
MemoryUsed property
PinEnabled property
PinEnabledCount property
Running property
Samp1eRate property
ScansDiscarded property
StructPrepare method

Master property
OperateMode property
RemoteMaster property
SlaveCount property
SlaveName method

DSC Component Programmer’s Interface

DAPL services

External board services

Server disk log services

Timing channel services

Error handling services

Events

Category
Graphical services

Configuration services

Events

Category

External board properties

Dap1Text property

ExternalBoard property
XbCalibrate method
XbEnab1ed property

ServerDiskLog property
ServerDiskLogBytes property

ServerDiskLogEnabled property

TcEnabled property
TcEnabledCount property
TcMaximum property
TcWidth property

SystemErrorProcess method

OnCalibrateProgress event
OnHardwareDelayChange event
OnInputRangeUpdate event
OnPinEnabledUpdate event
OnSystemError event

TDscGroup Services
ConfigDialogShow method
AddOne method

Count property

DeleteOne method

Dsc property
OnAfterNumDscChange event
OnBeforeNumDscChange event

TExternalBoard Services

InputOffset property
InputOffsetRange property

DSC Component Programmer’s Interface

273

InputRange property
InputType property
OutputExcitation property

External board utilities XbPinConfigGet method
XbPinConfigSet method

Category TFilterDesign Services

Filter design properties Attenuation property
CutoffFreqHigh property
CutoffFreqlLow property
CutoffSTopeHigh property
CutoffSTopelow property
FilterName property
FilterType property
PinToFilterMap property
Sharpness property

Filter design utilities FilterIndex method
FilterParametersGet method
FilterParametersSet method
TransferFunctionGet method
UnitStepGet method
UnitSteplLengthGet method

Category TServerDiskLog Services

Server disk log properties ~ BlockS1ize property
FileFlagsAttributes property
FiTeName property
FileShareMode property
Flags property
MaxCount property
OpenFlags property

Server disk log utilities ServerDiskLogConfigGet method
ServerDiskLogConfigSet method

274 DSC Component Programmer’s Interface

The following figure displays available design time properties with the TDsc object
from the Delphi 7.0 development environment.

DSC Component Programmer’s Interface 275

AddOne method

The AddOne method adds one iDSC to the iDSC group.

Applies To
TDscGroup

Declaration
function AddOne: integer;

Return Values
The return value is the index of the added iDSC or Count - 1.

Remarks
AddOne adds one iDSC to the iDSC group and returns the index of the added iDSC.
The index of the iDSC is the Count minus one. The maximum number of iDSCs in
the iDSC group is 64 which means that the maximum index is 63. When AddOne is
invoked, the Count increases by one.

As an example, AddOne returns 3. Therefore, the newly added iDSC index is 3 and
the Count is 4.

See Also
DeleteOne method, Count property, ConfigDialogShow method

276 DSC Component Programmer’s Interface

Address property

The Address property specifies the machine name and iDSC board name. The name
returned is in UNC format.

Applies To
TDsc

Declaration
property Address: string;

Default
\\.\Dap®

Access Restrictions
None

Remarks
Address consists of two portions, the machine name and the iDSC board name. The
naming method is based on the UNC.

Using \\.\Dap® as an example, \\ . denotes the local machine and \Dap® is the
name of the iDSC board. If you are connected to a remote machine through DAPcell
named PC45, that contains Dap®, then Address is \\PC45\Dap®.

See Also
UNC

DSC Component Programmer’s Interface 277

Attenuation property

The Attenuation property is an array property that specifies the attenuation of the
filter.

Applies To
TFilterDesign

Declaration
property Attenuation[7 F7] terIndex: integer]: single;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Default
Dependent on SampleRate
153600 s/s: 10.2
76800 s/s: 9.4
102400 s/s, 51200 s/s, 10240 s/s, 2048 s/s, 1024 s/s: 9.8
All others: 9.0

Access Restrictions
Run time only

Remarks
Attenuation specifies the filter response in the stopband region. Valid numbers
are in the range 6.0 to 12.0. The larger the number, the more attenuation in the
stopband, but this will further attenuate the frequencies near cutoff.

Valid filter indices are 0 through 7. If the filter index is not valid, the exception
‘Filter index is out of range’ is raised.

Attenuationisa TFilterDesign property.

278 DSC Component Programmer’s Interface

See Also
ConfigDialogShow method

DSC Component Programmer’s Interface 279

BlockSize property

The BTockS1i ze property specifies the size of block to write.

Applies To
TServerDiskLog

Declaration
property BlockSize: DWORD;

Default
8192

Access Restrictions
None

Remarks
B1ockS1ze specifies the minimum amount of data, in bytes, to write to the disk log
file at one time. This field is provided for disk transfer optimization.

See Also
ServerDiskLog property, TServerDiskLog object

280 DSC Component Programmer’s Interface

BufferAvail method

The BufferAvail method gets the number of bytes available for reading from the
iDSC board.

Applies To
TDsc

Declaration
function BufferAvail: integer;

Return Values
If the function succeeds, the return value is the number of bytes available for
reading. If the function fails, the return value is -1. If there are no data available, the
return value is 0.

Remarks
BufferAvail returns the number of bytes already buffered. An application is safe
to read that number from the iDSC board without being blocked.

For efficient data transfer, it is best to use BufferGetEx with a time wait, and avoid
using BufferAvail. BufferGetEx returns the actual number of bytes read which
lets the application know what data have been transferred.

See Also
BufferGet method, BufferGetEx method

DSC Component Programmer’s Interface 281

BufferGet method

The BufferGet method reads a block of data from the iDSC board.

Applies To
TDsc

Declaration
function BufferGet(
iBytes: integer; /I Number of bytes to read.
iTimelWait: integer; /I Longest time to wait for data.
var Buffer /I Buffer to receive data.

): integer;

Parameters
iBytes
Number of bytes to read.
iTimeWait
Specifies the longest time in milliseconds that the get operation can be blocked
waiting for data. If no data shows up in that amount of time, the operation should
be aborted.

Buffer
Buffer for storing the data from the iDSC board.

Return Values
If the function succeeds, the return value is the number of bytes read. If the function
fails, the return value is -1 or an exception is raised. If there are no data available,
the return value is 0.

Remarks
BufferGet attempts to read all the requested 78y tes from the iDSC board. If all
the requested 7Bytes are not available for 7 7imeWa it milliseconds, it returns with
the number of bytes read so far.

This method is useful for displaying the acquired and filtered data in graphs, tables,
etc.

282 DSC Component Programmer’s Interface

See Also
BufferGetEx method

DSC Component Programmer’s Interface 283

BufferGetEnabled property

The BufferGetEnabled property enables or disables the BufferGet method and
BufferGetEx method.

Applies To
TDsc

Declaration
property BufferGetEnabled: boolean;

Default
True

Access Restrictions
Run time only

Remarks
BufferGetEnabTled allows enabling or disabling the Buf ferGet method and
BufferGetEx method. If BufferGetEnabled is true, BufferGet and
BufferGetEx are enabled. If BufferGetEnabled is false, BufferGet and
BufferGetEx are disabled, and invoking those methods will return -1.

BufferGetEnabled is useful if another PC wants to access the iDSC data from the
PC with the iDSC through networking. The networking capability is only available
with the DAPcell Local and DAPcell servers. It is not available with the Accel32
server.

See Also
BufferGet method, BufferGetEx method

284 DSC Component Programmer’s Interface

BufferGetEx method

The BufferGetEx method reads a block of data from the iDSC board, using the

TBufferGetEx record to control its behavior.

Applies To
TDsc

Declaration
function BufferGetEx(
const bgeBufferGetEx: TBufferGetEx; // Information record.

var Buffer /I Buffer to receive data.

): integer;

Parameters
bgeBufferGetEx

TBufferGetEx is a record that passes the appropriate parameters.
TBufferGetEx must be initialized using StructPrepare.

Buffer
Buffer for storing the data from the iDSC board.

Return Values

If the function succeeds, the return value is the number of bytes read. If the function

fails, an exception is raised. If there are no data available, the return value is 0. If

CommandsLoad or StartAcquiring has not been invoked, the return value is -1.

Remarks

BufferGetEx is an extended version of Buf ferGet. It allows a minimum request
count, 1MinBytes, and a maximum request count, 7 MaxBytes, specification. Both

iMinBytes and 7MaxBytes are passed into this function through the

TBufferGetEx record. Both iMinBytes and iMaxBytes are in bytes and must be
an integral multiple of 7BytesMultiple. The function reads at least iMinBytes
bytes of data. Once it reads enough data to cover 71M7inBytes, the function reads all

available data up to 7MaxBytes without waiting. The actual bytes returned is

always an integral multiple of 7BytesMultiple.

DSC Component Programmer’s Interface

285

Before iMinBytes is covered, the function will be blocked waiting for data if the
target pipe becomes empty. In this case, the two members of the TBufferGetEx
record, i TimeWait and 7T7imeOut, determine the behavior of the function. If
iMinBytes is not covered in 7 77meOut milliseconds, or if no data are available for
iTimeWa 1t milliseconds, the function returns immediately. The return value is then
the number of bytes actually read up to the point where the operation is aborted. It
can be zero or any integral multiple of 71BytesMultiple less than iMinBytes. An
application can check the return value to determine if a time-out has occurred.

See Also
BufferGet method

286 DSC Component Programmer’s Interface

Calibrate method

The Calibrate method performs calibration on the iDSC board.

Applies To
TDsc

Declaration
procedure Calibrate;

Remarks
Calibrate calibrates the iDSC board for DC gain and offset, and saves the

calibration values.

Calibrate is automatically invoked when a user selects StartAcquiring for the
first time. The next time a user uses the component, the saved calibration values are
reused.

If the calibration values are not found, calibration is automatically re-invoked. A
user can force recalibration by calling Calibrate.

See Also
StartAcquiring method

DSC Component Programmer’s Interface 287

CommandsLoad method

The CommandsLoad method downloads the configuration commands to the iDSC
board and performs the necessary configuration for filtering.

Applies To
TDsc

Declaration
procedure CommandsLoad;

Remarks
CommandsLoad configures the iDSC board with the appropriate programs and
coefficients. The filter designs are used internally by CommandsLoad to calculate
and download the appropriate commands.

If the iDSC board configuration or filter designs change and StartAcquiringis
selected, StartAcquiring automatically invokes CommandsLoad and downloads
new commands to the iDSC board. Data will show up at the PC two times
GroupDeTlay seconds later.

If the iDSC board configuration or filter designs change and CommandsLoad is
selected before StartAcquiring, data will show up immediately at the PC. Data
that show up immediately are actually data that was sampled GroupDeTay seconds
ago.

See Also
GroupDeTlay property, StartAcquiring method

288 DSC Component Programmer’s Interface

ConfigDialogOptions property

The ConfigDialogOptions property allows manipulating the display options of
ConfigDialogShow.

Applies To
TDsc

Declaration
property ConfigDialogOptions: TConfigDialogOptions;

TConfigDialogOptions = set of TConfigDialogOption;

TConfigDialogOption = (
cdolnputScreenHide, cdoFDScreenHide, cdoTcHide,
cdoFDOHide, cdoFDIHide, cdoFDZ2Hide, cdoFD3Hide,
cdoFD4Hide, cdoFD5Hide, cdoFD6Hide, cdoFD/Hide

)

Default
[cdoTcHide]

Access Restrictions
None

Remarks
ConfigDialogOptions specifies the display options of ConfigDialogShow. It is
of type TConfigDialogOptions, whichisasetof TConfigDialogOption.
ConfigDialogOptions can be manipulated using the set operators.

ConfigDialogOptions specifies one or more of the following options.

cdolnputScreenHide Hide the Input Screen.
cdoFDScreenHide Hide the Filter Design Screen.
cdoTcHide Hide the timing channels selection.
cdoFDOHide Hide filter design index O.
cdoFDIHide Hide filter design index 1.
cdoFDZHide Hide filter design index 2.
cdoFD3Hide Hide filter design index 3.

DSC Component Programmer’s Interface 289

cdoFD4Hide
cdoFD5Hide
cdoFD6Hide
cdoFD/Hide

See Also

ConfigDialogShow method

290

Hide filter design index 4.
Hide filter design index 5.
Hide filter design index 6.
Hide filter design index 7.

DSC Component Programmer’s Interface

ConfigDialogShow method

The ConfigDialogShow method displays modal dialog screens for graphical
configuration of the inputs and filter designs.

Applies To
TDsc

Declaration
function ConfigDialogShow: integer;

Return Values
If the user selects the OK button when changes are made, the return value is mrOk
(of value 1). If the user selects the OK button when no changes are made, the return
value is mrignore (of value 5). If the user selects the Cancel button, the return value
is mrCancel (of value 2).

Remarks
ConfigDialogShow simplifies the configuration of the input and filter design
process with a graphical interface. The Input Screen provides a quick method for
selecting the sample rate, selecting the input range, mapping the input pins to
selected filter designs, and enabling or disabling the input pins.

DSC Component Programmer’s Interface 291

The figure below displays the Input Screen.

i Configuration

I T I T
BRI TR I
cee oz s
IR R T
I S I TR
B T L
B T I
I = T

¥
v
¥
¥
¥
~
¥
¥

The Filter Design Screen allows easy manipulation of filter parameters like
sharpness, low cutoff frequency, low cutoff slope, high cutoff frequency, high cutoff
slope, and attenuation, either by entering a valid number or by adjusting a slider.
When the user selects the right click button, there are several more options like
Crosshair Track,Y Display (linear, linear zoom, log, log zoom, and unit step),
Defaults Load, Copy,and Paste. The Copy (Ctr1-C)and Paste (Ctrl-V)
feature copies the filter parameters from one filter design tab to another.

292 DSC Component Programmer’s Interface

The figure below displays the Filter Design Screen.

i Configuration

A user can also design filters using the run-time design techniques available. These
include FilterParametersGet and FilterParametersSet.

The Input Screen, Filter Design Screen, timing channels selection, and individual
filter designs can be hidden using ConfigDialogOptions.

See Also
ConfigDialogOptions property, FilterParametersGet method,
FilterParametersSet method

DSC Component Programmer’s Interface 293

ConfigDialogShow method

The ConfigDialogShow method displays modal dialog screens for graphical
configuration of multiple iDSC boards.

Applies To
TDscGroup

Declaration
function ConfigDialogShow: integer;

Return Values
If the user selects the OK button, the return value is IDOK (of value 1). If the user
selects the Cancel button, the return value is IDCANCEL (of value 2).

Remarks
ConfigDialogShow simplifies the configuration of multiple iDSC boards with a
graphical interface. When the user expands the iDSC Boards tree, there are options
for changing the Address and Mode. When the user selects the DSC name with the
right click button, there are several more options like External Board
Calibrate, External Board Enable, Raw Data, Remote Master, Server
Disk Log,and Copy and Paste. The Copy and Paste feature allows the user to
copy the entire configuration of an iDSC board to another iDSC board.

For each iDSC board, the Input Screen provides a quick method for selecting the
sample rate, selecting the input range, mapping the input pins to selected filter
designs, and enabling or disabling the input pins.

The Filter Design Screen allows easy manipulation of filter parameters like
sharpness, low cutoff frequency, low cutoff slope, high cutoff frequency, high cutoff
slope, and attenuation, either by entering a valid number or by adjusting a slider.
When the user selects the right click button, there are several more options like
Crosshair Track,Y Display (linear, linear zoom, log, log zoom, and unit step),
Defaults Load, Copy,and Paste. The Copy (Ctr1-C)and Paste (Ctrl1-V)
feature copies the filter parameters from one filter design tab to another.

294 DSC Component Programmer’s Interface

The figure below displays the configuration of a group of four iDSC boards. DSCO
and DSC1 are configured as Independent, while DSC2 is the Master of DSC3.

i Configuration: DSC2

e C
A C
e C
Ca C
[C
e C
O C
A C

(S A B B VB B |

See Also
AddOne method, DeleteOne method

DSC Component Programmer’s Interface 295

Count property

The Count property returns the number of iDSCs in the iDSC group.

Applies To
TDscGroup

Declaration
property Count: integer;

Access Restrictions
Read only; Run time only

Remarks
Count returns the number of iDSCs in the iDSC group. Count increases by one
when AddOne is invoked and decreases by one when DeleteOne is invoked. The
maximum number of iDSCs in the iDSC group is 64.

See Also
AddOne method, DeleteOne method

296 DSC Component Programmer’s Interface

CutoffFreqHigh property

The CutoffFreqHigh property is an array property that specifies the high cutoff
frequency of the filter.

Applies To
TFilterDesign

Declaration
property CutoffFreqHigh[7 F 7 1terIndex: integer]: single;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Default
Three-quarters the Nyquist frequency

Access Restrictions
Run time only

Remarks
CutoffFreqHigh determines the ideal high cutoff response which the filter is
designed to approximate. It is specified in Hertz. Valid numbers are in the range 2%
to 80% of the Nyquist frequency (0.02 * Nyquist frequency to 0.8 * Nyquist
frequency). The Nyquist frequency is half the sample rate.

Valid filter indices are 0 through 7. If the filter index is not valid, the exception
‘Filter index is out of range’ is raised.

CutoffFreqHighisa TFilterDesign property.

See Also
CutoffFreqlLow property, ConfigDialogShow method

DSC Component Programmer’s Interface 297

CutoffFreqlLow property

The CutoffFreqlLow property is an array property that specifies the low cutoff
frequency of the filter.

Applies To
TFilterDesign

Declaration
property CutoffFreqLow[7 7] terIndex: integer]: single;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Default
Half the Nyquist frequency

Access Restrictions
Run time only

Remarks
CutoffFreqlLow determines the ideal low cutoff response which the filter is
designed to approximate. It is specified in Hertz. Valid numbers are in the range 2%
to 80% of the Nyquist frequency (0.02 * Nyquist frequency to 0.8 * Nyquist
frequency). The Nyquist frequency is half the sample rate.

Valid filter indices are 0 through 7. If the filter index is not valid, the exception
‘Filter index is out of range’ is raised.

CutoffFreqlLowisa TFilterDesign property.

See Also
CutoffFreqHigh property, ConfigDialogShow method

298 DSC Component Programmer’s Interface

CutoffSlopeHigh property

The CutoffSlopeHigh property is an array property that specifies the high cutoff
slope of the filter.

Applies To
TFilterDesign

Declaration
property CutoffSlopeHigh[i Fi 1 terIndex: integer]: single;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Default
Dependent on SampleRate
153600 s/s, 102400 s/s, 51200 s/s, 10240 s/s, 2048 s/s, 1024 s/s: 0.0
All others: 0.04

Access Restrictions
Run time only

Remarks
CutoffSTopeHigh determines the ideal high cutoff response which the filter is
designed to approximate. It is specified as a fraction of the Nyquist frequency, with
the Nyquist frequency normalized to 1.0. Valid numbers are in the range 0.0 to 0.8.
0.0 corresponds to 0% of the Nyquist frequency and 0.8 corresponds to 80% of the
Nyquist frequency. The Nyquist frequency is half the sample rate.

Valid filter indices are 0 through 7. If the filter index is not valid, the exception
‘Filter index is out of range’ is raised.

CutoffSlopeHighisa TFilterDesign property.

DSC Component Programmer’s Interface 299

See Also
CutoffSTopelow property, ConfigDialogShow method

300 DSC Component Programmer’s Interface

CutoffSlopelLow property

The CutoffSlopelLow property is an array property that specifies the low cutoff
slope of the filter.

Applies To
TFilterDesign

Declaration
property CutoffSlopeLow[7 FiterIndex: integer]: single;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Default
Dependent on SampleRate
153600 s/s, 102400 s/s, 51200 s/s, 10240 s/s, 2048 s/s, 1024 s/s: 0.0
All others: 0.04

Access Restrictions
Run time only

Remarks
CutoffSTopeLow determines the ideal low cutoff response which the filter is
designed to approximate. It is specified as a fraction of the Nyquist frequency, with
the Nyquist frequency normalized to 1.0. Valid numbers are in the range 0.0 to 0.8.
0.0 corresponds to 0% of the Nyquist frequency and 0.8 corresponds to 80% of the
Nyquist frequency. The Nyquist frequency is half the sample rate.

Valid filter indices are 0 through 7. If the filter index is not valid, the exception
‘Filter index is out of range’ is raised.

CutoffSTopelLowisa TFilterDesign property.

DSC Component Programmer’s Interface 301

See Also
CutoffSTopeHigh property, ConfigDialogShow method

302 DSC Component Programmer’s Interface

DaplText property

The Dap1Text property defines the DAPL text for the iDSC.

Applies To
TDsc

Declaration
property DaplText: TStringList;

Access Restrictions
Read only; Run time only

Remarks
Dap1Text allows the user to define custom DAPL text for the iDSC. Each line of
DAPL text must be delimited by a carriage-return, line-feed, or both.

The DAPL text is sent to the iDSC when the user invokes CommandsLoad or
StartAcquiring.

See Also
CommandsLoad method, StartAcquiring method

DSC Component Programmer’s Interface 303

DeleteOne method

The DeleteOne method deletes one iDSC from the iDSC group.

Applies To
TDscGroup

Declaration
function DeleteOne: integer;

Return Values
The return value is the last index of the remaining iDSCs or Count - 1.

Remarks
DeleteOne deletes one iDSC from the iDSC group and returns the last index of the
remaining iDSCs. The index of the iDSC is the Count minus one. The maximum
number of iDSCs in the iDSC group is 64 which means that the maximum index is
63. When DeleteOne is invoked, the Count decreases by one.

As an example, DeTeteOne returns 3. Therefore, the last index of the remaining
iDSCs is 3 and the Count is 4.

See Also
AddOne method, Count property, ConfigDialogShow method

304 DSC Component Programmer’s Interface

Dsc property

The Dsc property is an array property that allows access to a specific iDSC board.

Applies To
TDscGroup

Declaration
property Dscfli: integer]: TDsc;

Parameters
i

iDSC board index of interest. Valid iDSC board indices are 0 through Count - 1.

Access Restrictions
Read only; Run time only

Remarks
Dsc allows access to a specific iDSC board using the iDSC board index. Valid iDSC
board indices are 0 through Count - 1.

The Dsc property should not be stored because it is destroyed and recreated in
methods like ConfigDialogShow, DeleteOne, AddOne, etc. The Dsc property
should be called repeatedly to access a specific iDSC board.

Dsc is of type TDsc.

See Also
ConfigDialogShow method, Count property, TDsc object

DSC Component Programmer’s Interface 305

ExternalBoard property

The ExternalBoard property allows access to the external board configuration
through the TExternalBoard object.

Applies To
TDsc

Declaration
property ExternalBoard: TExternalBoard;

Access Restrictions
Read only; Run time only

Remarks
ExternalBoard provides access to the external board properties like

InputOffset, InputOffsetRange, InputRange, InputType, and
OQutputExcitation.

It also provides access to the external board methods like XbPinConfigGet and
XbPinConfigSet. If ExternalBoard is not addressed, these properties and
methods are inaccessible.

See Also
TExternalBoard object

306 DSC Component Programmer’s Interface

FileFlagsAttributes property

The FileFlagsAttributes property specifies the file attributes.

Applies To
TServerDiskLog

Declaration
property FileFlagsAttributes: TFileFlagsAttributes;

TFileFlagsAttributes = set of TFileFlagsAttributesEnum;

TFileFlagsAttributesEnum = (
ffaAttributeNormal,
ffaAttributeEncrypted,
ffaFlagWriteThrough,
ffaFlagSequentialScan

)

Default
[ffaAttributeNormal]

Access Restrictions
None

Remarks
FileFlagsAttributes specifies the file attributes of the disk log file. It is of type
TFileFlagsAttributes, whichisasetof TFileFlagsAttributesEnum.
FileFlagsAttributes can be manipulated using the set operators.

FileFlagsAttributes specifies one or more of the following options.

ffaAttributeNormal No special attributes.
ffaAttributeEncrypted The data in the file is encrypted.
ffaFlagWriteThrough Write through any intermediate caching
and go directly to disk.
ffaFlagSequentialScan Can be used to optimize the transfer of

large blocks of data. Most applications
will not need this flag.

DSC Component Programmer’s Interface 307

See Also
ServerDiskLog property, TServerDiskLog object

308 DSC Component Programmer’s Interface

FileName property

The Fi1eName property specifies the file name.

Applies To
TServerDiskLog

Declaration
property FileName: string;

Default
Empty string

Access Restrictions
None

Remarks
FileName specifies the name of the primary disk log file and the name of a possible

mirror disk log file, if mirror logging is enabled. The default is an empty string.

Mirror logging is enabled by selecting the d77MirrorlLog flag of the Flags
property. Multiple file names are separated by semi-colons. Currently, only one
mirror file is allowed. Both files must be on the same side of the DAPcell
Local/DAPcell service (the PC application side or the iDSC side).

See Also
ServerDiskLog property, TServerDiskLog object

DSC Component Programmer’s Interface 309

FileShareMode property

The FileShareMode property specifies the file share properties.

Applies To
TServerDiskLog

Declaration
property FileShareMode: TFileShareMode;

TFileShareMode = set of TFileShareModeEnum;

TFileShareModeEnum = (
fsmNone,
fsmRead,
fsmWrite,
fsmReadWrite

)

Default
[fsmRead]

Access Restrictions
None

Remarks
FileShareMode specifies the file share mode of the disk log file. It is of type

TFileShareMode, which is a set of TFiTeShareModeEnum. FileShareMode can
be manipulated using the set operators.

FileShareMode specifies one or more of the following options.

fsmNone The file cannot be used by another process.

fsmRead The file can be read by another process.

fsmWrite The file can be written to by another process.

fsmReadWrite The file can be read and written to by another process.
See Also

ServerDisklLog property, TServerDiskLog object

310 DSC Component Programmer’s Interface

FilterDesign property

The FilterDesign property specifies the currently active filter design through the
TFilterDesign object.

Applies To
TDsc

Declaration
property FilterDesign: TFilterDesign;

Access Restrictions
Read only; Run time only

Remarks
FilterDesign provides access to the filter design properties like Attenuation,
CutoffFreqHigh, CutoffFreqLow, CutoffSlopeHigh, CutoffSlopelow,
FilterName, FilterType, PinToFilterMap, and Sharpness.

It also provides access to the filter design methods like FiTterIndex,
FilterParametersGet, FilterParametersSet, TransferFunctionGet,
UnitStepGet, and .UnitStepLengthGet. If FilterDesign is not addressed,
these properties and methods are inaccessible.

See Also
TFilterDesign object

DSC Component Programmer’s Interface 311

FilterIndex method

The FilterIndex method returns the filter index given a filter name.

Applies To
TFilterDesign

Declaration
function FilterIndex(
sFilterName: string /I Filter name.
): integer;

Parameters
SFilterName

Filter name string.

Return Values
If the function succeeds, the return value is the filter index. If the function fails, the
return value is -1. For example, if sF71terName is an invalid name, failure occurs.

If the filter name of interest is associated with filter index 0, the return value is 0.

Remarks
FilterIndex determines the filter index associated with a particular filter name.

Since there are a maximum of eight filter designs, valid filter indices are 0 through
7.

The filter index is useful in methods like FiTterParametersGet and
FilterParametersSet.

FilterIndexisa TFilterDesign method.

See Also
FilterParametersGet method, FilterParametersSet method,
TFilterDesign object

312 DSC Component Programmer’s Interface

FilterName property

The FilterName property is an array property that specifies the filter name
associated with a filter index.

Applies To
TFilterDesign

Declaration
property FilterName[7F7]terIndex: integer]: string;

Parameters
iFilterindex
Filter index of interest. Valid filter indices are 0 through 7.

Default
FDO, FD1, FD2, FD3, FD4, FD5, FD6, FD7

Access Restrictions
Run time only

Remarks
FilterName allows the user to specify a unique filter name for an associated filter
index. If an already existing filter name is assigned, the existing filter name will not
change. The filter name is restricted to 63 characters.

Valid filter indices are 0 through 7. If a filter index is invalid, the exception ‘Filter
index is out of range’ is raised.

FilterNameisa TFilterDesign property.

See Also
ConfigDialogShow method

DSC Component Programmer’s Interface 313

FilterParametersGet method

The FilterParametersGet method gets the filter parameters associated with a
filter index. The filter parameters include the name, type, sharpness, cutoff frequency,
cutoff slope, and attenuation.

Applies To
TFilterDesign

Declaration
procedure FilterParametersGet(
1FilterIndex: integer,; /I Filter index.
var pFilterParam: TFilterParam /I Information record.

)

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

pFilterParam
A TFilterParamrecord that receives the filter parameters. TFiTterParam
must be initialized using StructPrepare.

Remarks
FilterParametersGet returns the filter parameters for an associated filter index
inthe TFilterParamrecord. TFilterParam must be initialized using
StructPrepare before invoking FilterParametersGet or the method will fail.

Valid filter indices are 0 through 7. If the filter index is invalid, the exception ‘Filter
index is out of range’ is raised.

FilterParametersGetisa TFilterDesign method.

See Also
ConfigDialogShow method, FilterParametersSet method, TFilterParam

type

314 DSC Component Programmer’s Interface

FilterParametersSet method

The FiTterParametersSet method sets the filter parameters associated with a filter
index. The filter parameters include the name, type, sharpness, cutoff frequency,
cutoff slope, and attenuation.

Applies To
TFilterDesign
Declaration
procedure FilterParametersSet(
1FilterIndex: integer,; /I Filter index.
const pfilterParam TFilterParam /I Information record.
);
Parameters

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

pFilterParam
A TFilterParamrecord that passes the filter parameters. TFi1terParam must
be initialized using StructPrepare.

Remarks
FilterParametersSet modifies the filter parameters for an associated filter
index. All members of TFi1terParam must be set before invoking
FilterParametersSet.

TFilterParam must be initialized using StructPrepare before invoking
FilterParametersSetor the method will fail. The achName, iFilterType,
iSharpness, fCutofffreglLow, fCutoffSlopelow, fCutoffFreqHigh,
FCutoffSlopeHigh,and fAttenuation members of TFilterParam must be set
to the new desired values. Note that the filter parameters can be graphically set in
ConfigDialogShow.

Valid filter indices are 0 through 7. If the filter index is invalid, the exception ‘Filter
index is out of range’ is raised.

FilterParametersSetisa TFilterDesign method.

DSC Component Programmer’s Interface 315

See Also
ConfigDialogShow method, FilterParametersGet method, TFilterParam

type

316 DSC Component Programmer’s Interface

FilterType property

The FilterType property is an array property that specifies the filter type associated

with a filter index.

Applies To
TFilterDesign

Declaration
property FilterType[7Fi1terIndex: integer]: TFilterType;

TFilterType = (

fLowPass, /I Lowpass filter.
fBandPass // Bandpass filter.
)

Parameters

iFilterindex
Filter index of interest. Valid filter indices are 0 through 7.

Default
flowPass

Access Restrictions
Run time only

Remarks

FilterType allows the user to specify the filter type for an associated filter index.

The filter type is fLowPass for a lowpass filter and fBandPass for a bandpass

filter.

Valid filter indices are 0 through 7. If a filter index is invalid, the exception ‘Filter

index is out of range’ is raised.

FilterTypeisa TFilterDesign property.

DSC Component Programmer’s Interface

317

See Also
ConfigDialogShow method

318 DSC Component Programmer’s Interface

Flags property

The F1ags property controls the disk logging behavior.

Applies To
TServerDiskLog

Declaration
property Flags: TDiskLogFlags;

TDiskLogFlags = set of TDiskLogFlagsEnum;

TDiskLogFlagsEnum = (
dlfServerSide,
dlfFlushBefore,
dlfFlushAfter,
difMirrorlLog,
dIfAppendData,
difBlockTransfer

)

Default
[dlfServerSide, dlfFlushBefore]

Access Restrictions
None

Remarks
F1ags controls the disk logging behavior. It is of type TDisklLogFlags, which is a
setof TDiskLogFlagsEnum. F1ags can be manipulated using the set operators.

F1ags specifies one or more of the following options.

difServerSide
Log on the same side of the network connection as the iDSC. If not
specified, logging will take place on the application (client) side of the
network connection.

DSC Component Programmer’s Interface 319

difFlushBefore
Flush the input data pipe before beginning the logging session. Default
action is to not flush the pipes before logging.

difFlushAfter
Flush the input pipe after the logging session has terminated. Default
action is to not flush the pipes after logging.

dlfMirrorlLog
Enable mirror logging. Mirror logging creates a copy of the logged data
in another file.

dlfAppendData
Allow new data to be appended to an existing file. Only the
ofOpenAlways and ofOpenExisting flags of the OpenFlags
member can be used for appending.

difBlockTransfer
Open the file with no intermediate buffering or caching and access the file
in a special way that is highly dependent on the target disk attributes to
improve performance. This transfer mode adds overhead to slow rate
transfer with small buffers. It should only be used when necessary with a
very large B1ockS1i ze value (such as 1048576 and above). If this
option is selected, B1ockS1ize is automatically set to 1048576.

See Also
ServerDiskLog property, OpenFlags property, BlockS1ize property,
TServerDiskLog object

320 DSC Component Programmer’s Interface

GroupDelay property

The GroupDelay property returns the group delay in seconds for all of the filter
designs.

Applies To
TDsc

Declaration
property GroupDelay: single;

Default
Dependent on sample rate

Access Restrictions
Read only, Run time only

Remarks
GroupDeTlay informs a user of the group delay (in seconds) through all the filter
designs. The group delay is the amount of time to wait before data start showing up
at the PC, and does not include the filter designs of disabled input pins.

If the iDSC board configuration or filter designs change and StartAcquiringis
selected, StartAcquiring automatically invokes CommandsLoad and downloads
new commands to the iDSC board. Data will show up at the PC two times
GroupDeTlay seconds later.

If the iDSC board configuration or filter designs change and CommandsLoad is
selected before StartAcquiring, data will show up immediately at the PC. Data
that show up immediately are actually data that were sampled GroupDelay seconds
ago.

See Also
Calibrate method, CommandslLoad method, StartAcquiring method

DSC Component Programmer’s Interface 321

HardwareStop method

The HardwareStop method stops the hardware on the iDSC board.

Applies To
TDsc

Declaration
procedure HardwareStop;

Remarks
HardwareStop stops and resets the hardware on the iDSC board.

See Also
Running property

322 DSC Component Programmer’s Interface

InputOffset property

The InputOffset property is an array property that configures the input offset
voltage on the external board.

Applies To
TExternalBoard

Declaration
property InputOffset[7 PinIndex: integer]: single;

Parameters
iPinIndex

Pin index of interest. Valid pin indices are 0 through 7.

Default
0.0

Access Restrictions
Run time only

Remarks
InputOffset specifies the input offset voltage on the external board. The input
offset of the signal is specified in Volts. The input offset must be within the range of
the input offset range. If you specify an invalid input offset, the input offset will not
change from its previous setting. The default is 0.0.

Valid pin indices are 0 through 7. If the pin index is not valid, the exception ‘Pin
index is out of range’ is raised.

InputOffsetisa TExternalBoard property.

See Also
TXbPinConfig type

DSC Component Programmer’s Interface 323

InputOffsetRange property

The InputOffsetRange property is an array property that configures the input offset
range voltage on the external board.

Applies To
TExternalBoard

Declaration
property InputOffsetRange[7 P7nIndex: integer]: single;

Parameters
iPinIndex

Pin index of interest. Valid pin indices are 0 through 7.

Default
Dependent of the input range

Access Restrictions
Read only; Run time only

Remarks
InputOffsetRange specifies the input offset range voltage on the external board.
The input offset range of the signal is specified in Volts. The input offset range is
determined by the input range. For example, if the input range is 0.5 then the input
offset range is 2.5 for +/-2.5 V, if the input range is 2.0 then the input offset range is
1.0 for +/- 1V. This is a read only property that is dependent on the input range and
you cannot specify it.

Valid input offset ranges are:

0.5 when the input range is 0.01
1.0 when the input range is 0.02
2.5 when the input range is 0.05
0.5 when the input range is 0.1
1.0 when the input range is 0.2
2.5 when the input range is 0.5
1.0 when the input range is 1.0

324 DSC Component Programmer’s Interface

1.0 when the input range is 2.0
5.0 when the input range is 5.0
5.0 when the input range is 10.0

Valid pin indices are 0 through 7. If the pin index is not valid, the exception ‘Pin
index is out of range’ is raised.

InputOffsetRangeisa TExternalBoard property.

See Also
TXbPinConfig type

DSC Component Programmer’s Interface

325

InputRange property

The InputRange property configures the input range voltage on the iDSC board.

Applies To
TDsc

Declaration
property InputRange: integer;

Default
5000

Access Restrictions
None

Remarks
InputRange configures the input range voltage on the iDSC board. A user can

select either +/- 5 Volts or +/- 10 Volts.

To use this property the voltages must be specified as absolute values in millivolts.
For example, 5000 represents +/- 5 Volts and 10000 represents +/- 10 Volts.

If the input range is not valid, the exception ‘Input range of xxx is invalid’ is raised
where xxx represents the invalid input range.

See Also
ConfigDialogShow method

326 DSC Component Programmer’s Interface

InputRange property

The InputRange property is an array property that configures the input range voltage
on the external board.

Applies To
TExternalBoard

Declaration
property InputRange[7P7nIndex: integer]: single;

Parameters
iPinIndex

Pin index of interest. Valid pin indices are 0 through 7.

Default
10.0

Access Restrictions
Run time only

Remarks
InputRange specifies the input range voltage on the external board. The input
range of the signal is specified in Volts. For example, if you select 0.5 the input
range is +/- 500 mV, if you select 2.0 the input range +/- 2V. If you specify an
invalid input range, the input range will not change from its previous setting. The
default is 10.0.

Valid input ranges are:
0.01, 0.02, 0.05,
0.1,0.2,0.5,
1.0, 2.0, 5.0,
10.0

Valid pin indices are 0 through 7. If the pin index is not valid, the exception ‘Pin
index is out of range’ is raised.

InputRangeisa TExternalBoard property.

DSC Component Programmer’s Interface 327

See Also
TXbPinConfig type

328 DSC Component Programmer’s Interface

InputType property

The InputType property is an array property that configures the input type on the
external board.

Applies To
TExternalBoard

Declaration
property InputType[7 PinIndex: integer]: TinputType;

TInputType = (

1tDCCoupling, /I DC coupling.
TtACCoupling, /I AC coupling.
itExcitation, // Excitation voltage.
)
Parameters
iPinIndex

Pin index of interest. Valid pin indices are 0 through 7.

Default
7tDCCoupling

Access Restrictions
Run time only

Remarks
InputType specifies the input type on the external board. The type of input signal
includes DC coupling, AC coupling or excitation.

See Also
ExternalBoard property

DSC Component Programmer’s Interface 329

Master property

The Master property specifies the Master iDSC board through the TDsc object. It is
only useful in a Master/Slave Configuration.

Applies To
TDsc

Declaration
property Master: TDsc;

Default
Nil

Access Restrictions
None

Remarks
Master allows a user to designate one or more Master iDSC boards on a system.

When the Master iDSC boards are designated, the Slave iDSC boards are
automatically defined. Master will automatically update the operational state of the
iDSC board in OperateMode.

For example, imagine two iDSC boards on a system, DSC1 and DSC2. To make
DSC1 a Master iDSC board and DSC2 a Slave iDSC board, select DSC2 and hook
up DSCI as its Master. DSCI1 is now a Master and DSC2 is now a Slave. The
OperateMode for DSCI1 is omMaster and for DSC2 is omSTave.

See Also
OperateMode property, RemoteMaster property, TDsc object

330 DSC Component Programmer’s Interface

MaxCount property

The MaxCount property specifies the file maximum count.

Applies To

TServerDiskLog

Declaration

property MaxCount: TDscloInt64;

TDscloInt64 = packed record /I For environments that do not
dwlLowPart: DWORD; /I support 64-bit integers.
dwHighPart: DWORD;
end;

TDsclolInt64 = int64; /I For environments that support

[/ 64-bit integers.

Default
0

Access Restrictions
None

Remarks
MaxCount specifies the maximum number of bytes to log. The default is 0, which

causes logging to continue indefinitely until StopAcquiring is invoked.

See Also
ServerDiskLog property, TServerDiskLog object

DSC Component Programmer’s Interface 331

MemoryUsed property

The MemoryUsed property displays the used memory on the iDSC board.

Applies To
TDsc

Declaration
property MemoryUsed: integer;

Access Restrictions
Read only; Run time only

Remarks
MemoryUsed displays the used memory on the iDSC board in tenths of a percent.
As an example, if MemoryUsed returns 42, it means that 4.2% of memory is used.

MemoryUsed is useful in determining whether or not the iDSC board will be able to
sustain a particular sample rate without overflowing.

332 DSC Component Programmer’s Interface

OnAfterNumDscChange event

The OnAfterNumDscChange event runs after the number of iDSC boards change.

Applies To
TDscGroup

Declaration
property OnAfterNumDscChange: TNotifyEvent;

TNotifyEvent = procedure (Sender: TObject) of object;

Remarks
OnAfterNumDscChange is useful for executing user specific code after the number
of iDSC boards change, whether the number increases or decreases. The user can
increase the number of iDSCs using AddOne and decrease the number of iDSCs
using DeleteOne.

See Also
OnBeforeNumDscChange event, TDscGroup type

DSC Component Programmer’s Interface 333

OnBeforeNumDscChange event

The OnBeforeNumDscChange event runs before the number of iDSC boards change.

Applies To
TDscGroup

Declaration
property OnBeforeNumDscChange: TNotifyEvent;

TNotifyEvent = procedure (Sender: TObject) of object;

Remarks
OnBeforeNumDscChange is useful for executing user specific code before the
number of iDSC boards change, whether the number increases or decreases. The
user can increase the number of iDSCs using AddOne and decrease the number of
iDSCs using DeleteOne.

See Also
OnAfterNumDscChange event, TDscGroup type

334 DSC Component Programmer’s Interface

OnCalibrateProgress event

The OnCalibrateProgress event runs while the Calibrate method is executing
to inform the user of the progress of calibration.

Applies To
TDsc

Declaration
property OnCalibrateProgress: TProcCalibrateProgressEvent;

TProcCalibrateProgressEvent = procedure (
Sender: TObject;
1Progress: integer
) of object;

Remarks
OnCalibrateProgress is useful in determining the progress of calibration while
the Calibrate method is executing. OnCalibrateProgress is of type
TProcCalibrateProgressEvent. The parameter, 7Progress, specifies the
progress of iDSC calibration. The user can use the 7Progress parameter in a
progress bar, status bar, etc. to display the progress of calibration.

The OnCalibrateProgress event runs while the Calibrate method executes.
iProgress is measured as a percentage from 0 to 100. A value of 0 means that
calibration has not begun. A value of 100 means that calibration is complete.

See Also
Calibrate method

DSC Component Programmer’s Interface 335

OnHardwareDelayChange event

The OnHardwareDelayChange event runs if the hardware delay constant changes.

Applies To
TDsc

Declaration
property OnHardwareDelayChange: TProcEvent;

TProcEvent = procedure (Sender: TObject) of object;

Remarks
OnHardwareDelayChange is useful in determining if the hardware delay constant
has changed. The new hardware delay constant can then be displayed correctly.

The OnHardwareDelayChange event runs when the iDSC is first initialized, which
happens the first time Calibrate, XbCalibrate, CommandslLoad, or
StartAcquiringis called.

See Also
StartAcquiring method

336 DSC Component Programmer’s Interface

OninputRangeUpdate event

The OnInputRangeUpdate event runs when the input range is updated.

Applies To
TDsc

Declaration
property OnInputRangeUpdate: TProclnputRangeUpdateEvent;

TProclnputRangeUpdateEvent = procedure (
Sender: TObject;
7InputRange: integer
) of object;

Remarks
OnInputRangeUpdate is useful in determining when the input range has changed.
The new input range can then be used correctly. OnInputRangeUpdate is of type
TProcInputRangeUpdateEvent. The parameter, i InputRange, specifies the
supported input range of the iDSC.

The OnInputRangeUpdate event runs when the user changes the input range using
ConfigDialogShow or InputRange.

Different models of the iDSC support different ranges, so it is advisable to check
InputRange after setting it. InputRange returns the same value as 7 InputRange.

See Also
InputRange property

DSC Component Programmer’s Interface 337

OnPinEnabledUpdate event

The OnPinEnabledUpdate event runs when the enabled input pins are updated.

Applies To
TDsc

Declaration
property OnPinEnabledUpdate: TProcPinEnabledUpdateEvent;

TProcPinEnabledUpdateEvent = procedure (
Sender: TObject;
NewPins: TinputPins
) of object;

Remarks
OnPinEnabledUpdate is useful in determining when the enabled input pins have
changed. The new enabled input pins can then be used correctly.
OnPinEnabledUpdate is of type TProcPinEnabledUpdateEvent. The
parameter, NewP1ns, specifies the enabled input pins.

The OnPinEnabledUpdate event runs when the user enables or disables an input
pin using ConfigDialogShow or PinEnabled.

See Also
PinEnabled property

338 DSC Component Programmer’s Interface

OnSystemError event

The OnSystemError event runs when the system encounters a failure.

Applies To
TDsc

Declaration
property OnSystemError: TProcSystemErrorEvent;

TProcSystemErrorEvent = procedure (
Sender: TObject;
sError: string
) of object;

Remarks
OnSystemError is useful in determining if the system has encountered a failure
since it provides a way to access the errors. OnSystemError is of type
TProcSystemErrorEvent. The parameter, s£rror, displays an error message
when a system error occurs. The user can use the sE£rror parameter to display the
error message in an error handling routine.

The OnSystemError event runs when the SystemErrorProcess method is
invoked. SystemErrorProcess is automatically invoked during Buf ferGetEx if
there are errors from the iDSC. The user can also call the SystemErrorProcess
method and invoke the OnSystemError event if errors from the iDSC are
suspected.

An example of a system error is an input channel pipe overflow when the sample
rate of the iDSC board is too high for the PC to keep up.

See Also
SystemErrorProcess method

DSC Component Programmer’s Interface 339

OpenFlags property

The OpenFlags property specifies the file open options.

Applies To
TServerDiskLog

Declaration
property OpenFlags: TOpenFlags;
TOpenFlags = (
ofCreateNew,
ofCreateAlways,
ofOpenAlways,
ofOpenkExisting

)

Default
ofCreateAlways

Access Restrictions
None

Remarks
OpenFlags specifies the file open options of the disk log file. It is of type
TOpenFlags.

OpenFlags specifies one of the following options.

ofCreateNew Create a new file. Creation fails if the file
already exists.

ofCreateAlways Create a new file. If the file already exists, it
is overwritten.

ofOpenAlways Open an existing file. If the file does not exist,
it will be created.

ofOpenExisting Open an existing file without resetting
permissions. Opening fails if the file does
not exist.

340 DSC Component Programmer’s Interface

See Also
ServerDiskLog property, TServerDiskLog object

DSC Component Programmer’s Interface 341

OperateMode property

The OperateMode property specifies the operational mode of the iDSC board. Valid
operational modes are Normal, Master, or Slave.

Applies To
TDsc

Declaration
property OperateMode: TOperateMode;

TOperateMode = (

omNormal, // Normal iDSC board.
omMaster, /Il Master iDSC board.
omSlave /I Slave iDSC board.
)
Default
omNormal

Access Restrictions
None

Remarks
OperateMode specifies the operational mode of the iDSC board. It is of type
TOperateMode. OperateMode supports three operational modes: omNormal,
omMaster,and omS]ave. However, it is only provided to allow the user to select a
Normal iDSC board.

OperateMode cannot be used to specify Master and Slave iDSC boards. Instead,
the Master property should be used to set up Master and Slave iDSC boards.
Master will automatically update OperateMode to the correct state of either
omMaster or omSlave.

If the master has to support synchronization across PCs, RemoteMaster must be
set.

342 DSC Component Programmer’s Interface

See Also
Master property, RemoteMaster property

DSC Component Programmer’s Interface 343

OutputExcitation property

The OutputExcitation property is an array property that configures the output
excitation voltage on the external board.

Applies To
TExternalBoard

Declaration
property OutputExcitation[7 P7nIndex: integer]: single;

Parameters
iPinIndex

Pin index of interest. Valid pin indices are 0 through 7.

Default
0.0

Access Restrictions
Run time only

Remarks
OutputExcitation specifies the output excitation voltage on the external board.
The output excitation of the signal is specified in Volts. If you specify an invalid
output excitation, the output excitation will not change from its previous setting. The
default is 0.0.

Valid output excitation ranges are:
0.0, 1.0, 2.0, 5.0, 10.0

Valid pin indices are 0 through 7. If the pin index is not valid, the exception ‘Pin
index is out of range’ is raised.

OQutputExcitationisa TExternalBoard property.

See Also
TXbPinConfig type

344 DSC Component Programmer’s Interface

PinEnabled property

The PinEnab1led property specifies the set of enabled input pins on the iDSC board.

Applies To
TDsc

Declaration
property PinEnabled: TinputPins;

TInputPins = set of TInputPin;

TinputPin = (A0, A1, A2, A3, A4, A5, A6, A7)

Default
[A0, Al, A2, A3, A4, AL, A6, A/]

Access Restrictions
None

Remarks

PinEnabled specifies the enabled input pins. It is of type TInputPins, which is a

setof TInputPin. PinEnabled can be manipulated using the set operators.

PinEnabled is configured from a set of eight input pin options [A0, Al,

A3, A4, Ab, A6, A7]. Empty sets [] of input pins are not allowed. To find out

the number of enabled input pins, use the PinEnabledCount property.

See Also
PinEnabledCount property

DSC Component Programmer’s Interface

345

PinEnabledCount property

The PinEnabledCount property returns the number of enabled input pins on the
iDSC board.

Applies To
TDsc

Declaration
property PinEnabledCount: integer;

Default
Eight

Access Restrictions
Read only; Run time only

Remarks
PinEnabledCount returns the number of enabled input pins on the iDSC board. It
is related to the PinEnab1led property. Valid values for the enabled input pin count
are in the range one to eight.

See Also
PinEnabled property

346 DSC Component Programmer’s Interface

PinToFilterMap property

The PinToFilterMap property is an array property that specifies the mapping of a
filter index to an input pin index.

Applies To
TFilterDesign

Declaration
property PinToFilterMap[7 PinIndex: integer]: integer;

Default
A® mapped to FD@, A1 mapped to FD1, A2 mapped to FD2, A3 mapped to FD3, A4
mapped to FD4, A5 mapped to FD5, A6 mapped to FD6, A7 mapped to FD7, where A
is the input pin, FD is the filter index

Access Restrictions
Run time only

Remarks
PinToFilterMap associates a filter index to a corresponding input pin index. The
same filter design may be applied to several input pins.

Valid input pin indices are 0 through 7, which correspond to input pins A@ through
A7. Valid filter indices are 0 through 7. If an input pin index is invalid, the exception
‘Pin index is out of range’ is raised.

PinToFilterMapisa TFilterDesign property.

See Also
ConfigDialogShow method

DSC Component Programmer’s Interface 347

RemoteMaster property

The RemoteMaster property allows synchronization across PCs.

Applies To
TDsc

Declaration
property RemoteMaster: boolean;

Default
False

Access Restrictions
Run time only

Remarks
RemoteMaster enables the user to synchronize multiple iDSCs across PCs. It only
works if the MSXB 045 hardware is present. Please refer to the MSXB 045
hardware manual for more description on the hardware.

See Also
Master property, OperateMode property

348 DSC Component Programmer’s Interface

Running property

The Running property returns the state of the iDSC board.

Applies To
TDsc

Declaration
property Running: boolean;

Default
False

Access Restrictions
Read only, Run time only

Remarks
Running specifies whether the iDSC is running. Once StartAcquiringis
invoked, Running will return true. Once StopAcquiring is invoked, Running
will return false.

See Also
HardwareStop method, StartAcquiring method, StopAcquiring method

DSC Component Programmer’s Interface 349

SampleRate property

The SampTeRate property specifies the effective sampling rate per channel on the
iDSC board.

Applies To

TDsc

Declaration

property SampleRate: integer;

Default
12800

Access Restrictions
None

Remarks
Samp1eRate specifies the effective sampling rate in samples per second per
channel. The table below displays the valid sample rates arranged in octaves. There
are two effective sampling rates in the highest octave.

350

102400
51200
25600
12800
6400
3200
1600
800
400
200
100
50

25

3072
1536
768
384
192
96
48
24

10240
5120
2560
1280

640
320
160
80
40
20

153600
76800
38400
19200
9600
4800
2400
1200
600
300
150
75

2048
1024
512
256
128
64
32
16

15360
7680
3840
1920
960
480
240
120
60
30
15

DSC Component Programmer’s Interface

12 10 8

If an invalid sample rate is selected, the property will automatically select the closest
larger sample rate.

When the user changes the SampleRate, the Sharpness, CutoffSTopelow, and
Attenuation properties of TFiTterDesign will resort to their defaults. Only
CutoffFreqLow will retain its previously set value if the set value is valid. If the
previously set value of CutoffFreqLow is out of range, then CutoffFreqLow will
also resort to its default.

See Also
ConfigDialogShow method

DSC Component Programmer’s Interface 351

ScansDiscarded property

The ScansDiscarded property returns the number of scans thrown away since
CommandsLoad.

Applies To
TDsc

Declaration
property ScansDiscarded: TDoubleLong;

Access Restrictions
Read only; Run time only

Remarks
ScansDiscarded is useful in determining the number of scans discarded since

CommandsLoad. This information is useful in calculating timing delays.

A scan is a set of enabled input pins. For example, if there are five enabled input
pins, a scan consists of five samples, if there are two enabled input pins, a scan
consists of two samples.

See Also
CommandsLoad method

352 DSC Component Programmer’s Interface

ServerDiskLog property

The ServerDisklLog property allows access to the server disk log configuration
through the TServerDiskLog object.

Applies To
TDsc

Declaration
property ServerDiskLog: TServerDiskLog;

Access Restrictions
Read only

Remarks
ServerDisklLog provides access to the server disk log configuration properties like
BlockSize, FileFlagsAttributes, FileName, FileShareMode, Flags,
MaxCount, and OpenFlags.

It also provides access to the server disk log configuration methods like
ServerDiskLogConfigGet and ServerDiskLogConfigSet. If
ServerDisklLog is not addressed, these properties and methods are inacccessible.

See Also
TServerDiskLog object, ServerDiskLogEnabled property

DSC Component Programmer’s Interface 353

ServerDiskLogBytes property

The ServerDiskLogBytes property returns the number of bytes logged to disk by
the server.

Applies To
TDsc

Declaration
property ServerDiskLogBytes: TDscloInt64;

Access Restrictions
Read only, Run time only

Remarks
ServerDiskLogBytes returns the number of bytes logged to disk by the server. It
isa TDscIoInt64 type. It should be called after StartAcquiring is invoked if
ServerDiskLogEnabled is true. ServerDiskLogBytes will return O if no data
has been logged to disk.

See Also
ServerDisklLog property, ServerDiskLogEnabled property

354 DSC Component Programmer’s Interface

ServerDiskLogConfigGet method

The ServerDiskLogConfigGet method gets the server disk log configuration
through TServerDiskLogConfig.

Applies To
TServerDiskLog

Declaration
procedure ServerDiskLogConfigGet(
var pServerDiskLogConfig: TServerDiskLogConfig // Information record.

)

Parameters
pServerDisklLog
A TServerDiskLogConf1ig record that receives the server disk log
configuration. TServerDiskLogConf1ig must be initialized using
StructPrepare.

Remarks
ServerDiskLogConfigGet returns the server disk log configuration in the
TServerDiskLogConfigrecord. TServerDiskLogConfig must be initialized
using StructPrepare before invoking ServerDiskLogConfigGet or the
function will fail.

The pszFileName field of TServerDiskLogConfig must be initialized to point
to the user allocated buffer. The size of the user allocated buffer must be specified
using the dwf7TeNameSize field. It must include an extra space for the null
terminator.

If dwFileNameSize is 0, the file name is not returned in pszFileName. If
dwfFileNameSizeis 1, only the null terminator is returned in pszFileName.

See Also
ServerDiskLogConfigSet method, ServerDiskLogEnabT1ed property,
TServerDiskLogConfig type

DSC Component Programmer’s Interface 355

ServerDiskLogConfigSet method

The ServerDiskLogConfigSet method sets the server disk log configuration
through TServerDiskLogConfig.

Applies To
TServerDiskLog

Declaration
procedure ServerDiskLogConfigSet(
const pServerDiskLogConfig: TServerDiskLogConfig // Information record.

)

Parameters
pServerDiskLogConfig
A TServerDiskLogConf1ig record that passes the server disk log configuration.
TServerDiskLogConfig must be initialized using StructPrepare.

Remarks
ServerDiskLogConfigSet modifies the server disk log configuration through the
TServerDiskLogConfigrecord. TServerDiskLogConfig must be initialized
using StructPrepare before invoking ServerDiskLogConfigSet or the
function will fail.

The pszFileName field of TServerDiskLogConfig must be initialized to point
to the user allocated and initialized buffer. The dwfileNameSize field is not used.

It is recommended that the user invokes ServerDiskLogConfigGet to get the
server disk log configuration defaults, updates the pertinent fields, and then invokes
ServerDiskLogConfigSet to set the new desired values.

The DAPcell Local or DAPcell server will start a disk logging session when
StartAcquiring is invoked only if the following has been done:
1) Under Windows Control Panel | Data Acquisition Processor | Disk I/O tab | Disk
Logging:

- Set the Default Path to a valid path (or valid paths) on the server PC

- Set the Permission to Restrictedor Normal
- Select the Save button before closing the dialog, or changes will be lost

356 DSC Component Programmer’s Interface

For more information on Default Path and Permission, refer to the DAP
Service documentation by selecting the He 1 p button, or going to the main
documentation reference on the DAPtools CD.

2) Set a valid filename for pszFileName of TServerDiskLogConfig.
3) Enable ServerDiskLogEnabled.
The disk logging session will end when StopAcquiring is invoked.

The Accel32 server does not support server disk logging sessions.

See Also
ServerDiskLogConfigGet method, ServerDiskLogEnabTled property,
TServerDiskLogConfig type

DSC Component Programmer’s Interface 357

ServerDiskLogEnabled property

The ServerDiskLogEnabled property enables or disables the state of the server
disk log option.

Applies To
TDsc

Declaration
property ServerDiskLogEnabled: boolean;

Default
False

Access Restrictions
None

Remarks
ServerDiskLogEnabled allows enabling or disabling the state of the server disk
log option. If ServerDiskLogEnabled is true, the server will log data to disk
when StartAcquiring is invoked. If ServerDiskLogEnabTled is false, the
server will not log any data to disk when StartAcquiring is invoked.

See Also
ServerDisklLog property, ServerDiskLogBytes property

358 DSC Component Programmer’s Interface

Sharpness property

The Sharpness property is an array property that specifies the sharpness of the filter.

Applies To
TFilterDesign

Declaration
property Sharpness[7Fi]terIndex: integer]: integer;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Default
Dependent on SampleRate
153600 s/s: 37
102400 s/s: 119
76800 s/s: 95
51200 s/s, 10240 s/s, 2048 s/s, 1024 s/s: 195
All others: 137

Access Restrictions
Run time only

Remarks
Sharpness specifies the sharpness of the corner frequency response. It is specified
as an odd number. Valid numbers are in the range 37 to 255, depending on the
sample rate.

Valid filter indices are 0 through 7. If the filter index is not valid, the exception
‘Filter index is out of range’ is raised.

Sharpnessisa TFilterDesign property.

DSC Component Programmer’s Interface 359

See Also
ConfigDialogShow method, UnitSteplLengthGet method, UnitStepGet
method

360 DSC Component Programmer’s Interface

SlaveCount property

The STaveCount property returns the number of slaves attached to a Master iDSC
board. It is only useful in a Master/Slave Configuration.

Applies To
TDsc

Declaration
property SlaveCount: integer;

Default
N/A

Access Restrictions
Read only

Remarks
STaveCount only applies to a Master iDSC board. It is zero for a Normal iDSC
board or Slave iDSC board.

See Also
Master property

DSC Component Programmer’s Interface 361

SlaveName method

The STaveName method returns the name of a Slave iDSC board that is attached to a
Master iDSC board, given a slave index. It is only wuseful in a
Master/Slave Configuration.

Applies To
TDsc

Declaration
function SlaveName(
iSTavelndex: integer /I Slave index.
): string

Parameters
iSlavelndex
Slave index of interest. Valid slave indices are from 0 through STaveCount - 1.

Return Values
If the function succeeds, the return value is the slave name for the given slave index.
If the function fails, the return value is an error message string.

Remarks
STaveName should only be called on a Master iDSC board. When passed in a valid
slave index, it returns the corresponding slave name connected to the Master iDSC
board.

Valid slave indices are from 0 through STaveCount - 1. To get the names of all
slaves attached to a Master iDSC board, the user could use a for loop that goes from
0to SlaveCount - 1.

The method will return an error message string if STaveName is invoked on a Slave
or Normal iDSC board or if the user passes an invalid slave index to STaveName.

See Also
Master property

362 DSC Component Programmer’s Interface

StartAcquiring method

The StartAcquiring method starts the data acquiring process. Data will start
showing up at the PC.

Applies To
TDsc

Declaration
procedure StartAcquiring;

Remarks
StartAcquiring starts the sampling process, which causes data to start showing
up at the PC. StartAcquiring will force a Calibrate ifit cannot find the saved
calibration values, and a CommandsLoad if the iDSC board configuration or filter
designs have changed. If the iDSC board configuration or filter designs have
changed, the user may see a delay of two times GroupDeTay seconds.

Once StartAcquiring is invoked, the user can use BufferGetEx to read blocks
of data into buffers.

See Also
BufferGetEx method, Calibrate method, CommandsLoad method

DSC Component Programmer’s Interface 363

StopAcquiring method

The StopAcquiring method stops the data acquiring process. Data will stop
showing up at the PC.

Applies To
TDsc

Declaration
procedure StopAcquiring;

Remarks
StopAcquiring stops the sampling process. It is called after StartAcquiring to
stop data from showing up at the PC.

See Also
StartAcquiring method

364 DSC Component Programmer’s Interface

StructPrepare method

The StructPrepare method prepares structures for use with methods.

Applies To
TDsc

Declaration
procedure StructPrepare(
var Struct; /I Structure to initialize.
ulSize: Cardinal /I Size of structure.

)

Parameters
Struct

Structure to initialize.

ulSize
Size of structure.

Remarks
StructPrepare initializes the 7 InfoSize field and zeroes out all other fields of
structures. It should be used with structures that have an 7/nf0S7ze field before the
other fields of the structures are initialized. Since StructPrepare initializes the
iInfoSize field, there is no need to initialize it separately.

See Also
TBufferGetEx type, TFilterParamtype, TServerDiskLogConfig type,
TXbPinConfig type

DSC Component Programmer’s Interface 365

SystemErrorProcess method

The SystemErrorProcess method processes error messages from the iDSC.

Applies To
TDsc

Declaration
procedure SystemErrorProcess;

Remarks
SystemErrorProcess processes error messages from the iDSC if they exist, and
then invokes the OnSystemError event. SystemErrorProcess is automatically
invoked during the Buf ferGetEx method. The user can also call the
SystemErrorProcess method and invoke the OnSystemError event if errors
from the iDSC are suspected.

See Also
OnSystemError event

366 DSC Component Programmer’s Interface

TcEnabled property

The TcEnabled property specifies the set of enabled timing channels on the iDSC
board.

Applies To
TDsc

Declaration
property TcEnabled: TTimingChannels;

TTimingChannels = set of TTimingChannel;

TTimingChannel = (

Tco, /l Timing Channel 0.
Tcl, // Timing Channel 1.
TcWidth32 /I 32-bit width.
)
Default
[]

Access Restrictions
Run time only

Remarks
TcEnabled specifies the enabled timing channels. It is of type TTimingChannels,
which is asetof TTimingChannel. TcEnabled can be manipulated using the set
operators.

TcEnabled is configured from a set of three timing channel options [7c@, Tcl,
TcWidth32]. To find out the number of enabled timing channels, use the
TcEnabledCount property.

Tc0 enables Timing Channel 0 and 7¢I enables Timing Channel 1. TcWidth32
forces the timing channel width to be 4 bytes (32-bits) regardless of the sample rate.
If TcWidth32 is not enabled, the timing channel width can be either 2 bytes or 4
bytes depending on the sample rate. To find out the actual timing channel width, use
the TcWidth property.

DSC Component Programmer’s Interface 367

See Also
TcEnabledCount property, TcMaximum property, TcWidth property

368 DSC Component Programmer’s Interface

TcEnabledCount property

The TcEnabledCount property returns the number of enabled timing channels on the
iDSC board.

Applies To
TDsc

Declaration
property TcEnabledCount: integer;

Default
Zero

Access Restrictions
Read only; Run time only

Remarks
TcEnabledCount returns the number of enabled timing channels on the iDSC
board. It is related to the TcEnab1ed property. Valid values for the enabled timing
channel count are in the range zero to two.

See Also
TcEnabled property

DSC Component Programmer’s Interface 369

TcMaximum property

The TcMaximum property specifies the maximum timing channel value based on the
sample rate.

Applies To
TDsc

Declaration
property TcMaximum: integer;

Default
Dependent on sample rate

Access Restrictions
Read only; Run time only

Remarks
TcMaximum specifies the maximum timing channel value which is dependent on the
sample rate. TcMaximum can range from 128 to 2457600. The wide range of
TcMaximum forces TcWidth to be either 2 bytes or 4 bytes.

See Also
TcEnabled property, TcWidth property

370 DSC Component Programmer’s Interface

TcWidth property

The TcWidth property specifies the width, in bytes, of timing channel values.

Applies To
TDsc

Declaration
property TcWidth: integer;

Default
Dependent on sample rate

Access Restrictions
Read only; Run time only

Remarks
TcWidth specifies the width, in bytes, of timing channel values. It returns either 2
for 16-bit values or 4 for 32-bit values.

TcWidth is dependent on the sample rate. The timing channel width for sample
rates 8 s/s to 600 s/s are always 4 bytes. The timing channel width for sample rates
640 s/s to 153600 s/s are 2 bytes by default. The timing channel width for these
higher sample rates can be forced to 4 bytes by setting 7cWidth32 in the
TcEnabled property.

See Also
TcEnabled property, TcMaximum property

DSC Component Programmer’s Interface 371

TransferFunctionGet method

The TransferFunctionGet method plots the filter responses of the filter designs.

Applies To
TFilterDesign

Declaration
procedure TransferFunctionGet(
1FilterIndex: integer,; /I Filter index.
iLength: integer; /I Number of data points.
var Buffer: array of double /I Buffer to receive data.

)

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.
ilLength

Number of data points to return.
Buffer

Buffer for storing the transfer function data points. The buffer must be large
enough to accommodate the requested 7Length data points.

Remarks
TransferFunctionGet plots the filter responses of the filter designs. There can
be up to eight filter response plots since there are up to eight filter designs.

TransferFunctionGetisa TFilterDesign method.

See Also
UnitSteplLengthGet method, UnitStepGet method

372 DSC Component Programmer’s Interface

UnitStepGet method

The UnitStepGet method plots the unit step responses of the filter designs.

Applies To
TFilterDesign

Declaration
procedure UnitStepGet(
1FilterIndex: integer,; /I Filter index.
iLength: integer; /I Number of data points.
var Buffer: array of double /I Buffer to receive data.
);
Parameters

iFilterIndex
Filter index of interest. Valid filter indices are 0 through 7.

ilLength
Number of data points to return.

Buffer
Buffer for storing the unit step data points. The buffer must be large enough to
accommodate the requested 7/ ength data points.

Remarks
UnitStepGet plots the unit step responses of the filter designs. The
UnitSteplLengthGet method should be used to determine the 7Length parameter.
There can be up to eight unit step response plots since there are up to eight filter

designs.

UnitStepGetisa TFilterDesign method.

See Also
UnitSteplLengthGet method, TransferFunctionGet method

DSC Component Programmer’s Interface 373

UnitStepLengthGet method

The UnitStepLengthGet method returns the number of data points in the unit step
response.

Applies To
TFilterDesign

Declaration
function UnitStepLengthGet(
i1FilterIndex:integer /I Filter index.
):iinteger;

Parameters
iFilterIndex

Filter index of interest. Valid filter indices are 0 through 7.

Remarks
UnitSteplLengthGet returns the number of data points in the unit step response.
The method should be used to determine the 7Length parameter of UnitStepGet.

UnitSteplLengthGet isa TFilterDesign method.

See Also
UnitStepGet method, TransferFunctionGet method

374 DSC Component Programmer’s Interface

XbCalibrate method

The XbCalibrate method performs calibration on the external board.

Applies To
TDsc

Declaration
procedure XbCalibrate(
TRate: integer /I Sample rate to use for calibration.

)

Parameters
iRate
Sample rate to use for external board calibration. A sample rate of 100 s/s is
recommended.

Remarks
XbCalibrate is used to calibrate the external board. It is advisable to not exceed a
sample rate of 1024 s/s or the calibration values may be unstable. XbCalibrate
works only if XbEnab1ed is true, otherwise an exception is raised.

A higher sample rate allows XbCalibrate to execute faster but the calibration
values are less accurate. A lower sample rate executes slower but the calibration
values are more accurate. The recommended value of 100 s/s works well.

XbCalibrate is not automatically invoked if the external board calibration values
are not found. The user has to explicitly call XbCalibrate to calibrate the external
board.

See Also
XbEnab1ed property, ExternalBoard property

DSC Component Programmer’s Interface 375

XbEnabled property

The XbEnab1ed property enables or disables the external board.

Applies To
TDsc

Declaration
property XbEnabled: boolean;

Default
False

Access Restrictions
None

Remarks
XbEnabT1ed allows enabling or disabling the external board. If XbEnab1led is true,
the external board is enabled and visible in ConfigDialogShow. If XbEnabled is
false, the external board is disabled and not visible in ConfigDialogShow.

To access the external board, XbEnab1ed must be true so that the configuration
information is sent to the external board. Also XbCalibrate will work only if
XbEnabled is true.

See Also
XbCalibrate method

376 DSC Component Programmer’s Interface

XbPinConfigGet method

The XbPinConfigGet method gets the external board pin configuration associated
with a pin index. The pin configuration includes the input type, input range, input
offset, input offset range, and output excitation.

Applies To
TExternalBoard

Declaration
procedure XbPinConfigGet(
1PinIndex: integer; /I Pin index.
var pXbPinConfig: TXbPinConfig /I Information record.

)

Parameters
iPinlndex

Pin index of interest. Valid pin indices are 0 through 7.

pXbPinConfig
A TXbPinConfig record that receives the pin configuration. TXbPinConfig
must be initialized using StructPrepare.

Remarks
XbPinConfigGet returns the pin configuration for an associated pin index in the
TXbPinConfigrecord. TXbPinConfig must be initialized using StructPrepare
before invoking XbPinConfigGet or the method will fail.

Valid pin indices are 0 through 7. If the pin index is invalid, the exception ‘Pin
index is out of range’ is raised.

XbPinConfigGet isa TXbPinConfig method.

See Also
ConfigDialogShow method, XbPinConfigSet method, TXbPinConf1ig type

DSC Component Programmer’s Interface 377

XbPinConfigSet method

The XbPinConfigSet method sets the pin configuration associated with a pin index.
The pin configuration includes the input type, input range, input offset, input offset
range, and output excitation.

Applies To
TExternalBoard

Declaration
procedure XbPinConfigSet(
1PinIndex: integer; /I Pin index.
const pXbPinConf1g: TXbPinConfig /I Information record.

)

Parameters
iPinlndex

Pin index of interest. Valid pin indices are 0 through 7.

pXbPinConfig
A TXbPinConfig record that passes the pin configuration. TXbPinConf1ig must
be initialized using StructPrepare.

Remarks
XbPinConfigSet modifies the pin configuration for an associated pin index. All
members of TXbPinConfig, except for fInputOffsetRange, must be set before
invoking XbPinConfigSet.

TXbPinConfig must be initialized using StructPrepare before invoking
XbPinConfigSet or the method will fail. The 7 InputType, finputRange,
fInputOffset,and fOutputExcitation members must be set to the new
desired values. fInputOffsetRange cannot be set since it is a read only property.
Note that the pin configuration can be graphically set in ConfigDialogShow.

Valid pin indices are 0 through 7. If the pin index is invalid, the exception ‘Pin
index is out of range’ is raised.

XbPinConfigSet isa TXbPinConfig method.

378 DSC Component Programmer’s Interface

See Also
ConfigDialogShow method, TXbPinConfig type, XbPinConfigGet method

DSC Component Programmer’s Interface 379

Obsolete Interface

The objects, properties, and methods listed below are obsolete. They are discussed in
greater detail in the following pages.

Category Dsc Services
Custom command TDapTCCL1ist object
services Dap1CCList property

380 DSC Component Programmer’s Interface

DAPL Custom Command Support

Using the DAPL custom command interface

To define DAPL custom commands, the user should use Dap1CCList. Each line of
the custom command list is a custom command filename. Once a single or a list of
custom commands have been defined for the iDSC using Dap1CCList, the custom
commands will be downloaded to the iDSC when the user invokes CommandsLoad or
StartAcquiring if the download code in Down1oad is set to enabled.

If the default stack size of 1024 bytes is not sufficient for the custom commands, the
user can change the stack size using StackSize. The stack size should only be
changed after the custom commands have been defined using Dap1CCL1ist but before
CommandsLoad or StartAcquiring is invoked.

If the user wants to retrieve the defined custom commands, invoke the DapT1CCList
property. Down1oad is used to get the state of the download code. StackSize is used
to get the stack size of a custom command.

Below is a Delphi example, where Dscl of type TDsc is already on the form:

Dscl.DaplICCList.Text := // Define two custom
‘c:\tl.bin’#13#10 + // commands.
‘c:\t2.bin’;

Dscl.DaplCCList.StackSizel[0] // Set tl.bin stack
1= 2048; // size to 2048 bytes.

Dscl.DaplCCList.StackSizel[1] // Set t2.bin stack
1= 2048; // size to 2048 bytes.

Dscl.DaplCCList.Download := true; // Enable custom

// command download.

Dscl.StartAcquiring; // Send custom command

// 1ist to iDSC.
//... (other function calls)

DSC Component Programmer’s Interface 381

TDapICCList object

The TDap1CCLi st object defines the behavior of the Dap1CCL1i st property.

Remarks
TDap1CCLi st supports the properties below:

Properties

DownToad property
StackSize property

382 DSC Component Programmer’s Interface

DapICCList property

The Dap1CCList property defines the DAPL custom command list for the iDSC
through the TDap1CCLi st object.

Applies To
TDsc

Declaration
property DaplCCList: TDaplCCList;

Access Restrictions
Read only; Run time only

Remarks
Dap1CCList allows the user to define a DAPL custom command list for the iDSC.
Each custom command in the list must be delimited by a carriage-return, line-feed,
or both.

The DAPL custom command list is sent to the iDSC when the user invokes
CommandsLoad or StartAcquiring if the download code in Download is
enabled.

See Also
TDap1CCList object, Download property, StackS1ize property

DSC Component Programmer’s Interface 383

Download property

The Download property indicates whether downloading the DAPL custom command
list is enabled or disabled.

Applies To
TDap1CCList

Declaration
property Download: boolean;

Default
False

Access Restrictions
None

Remarks
Download allows enabling or disabling the download code to indicate if
downloading the DAPL custom command list is enabled or disabled.

If the download code is enabled, the DAPL custom command list is downloaded to
the iDSC when the user invokes CommandsLoad or StartAcquiring. If the
download code is disabled, the DAPL custom command list is not downloaded to
the iDSC.

The user should only have to download the DAPL custom command list to the iDSC
once at startup.

See Also
Dap1CCLi st property, StackSize property

384 DSC Component Programmer’s Interface

StackSize property

The StackSize property is an array property that configures the stack size of the
custom command identified by an index.

Applies To
TDap1CCList

Declaration
property StackSize[7 I ndex: integer]: integer;

Default
1024

Access Restrictions
None

Remarks
StackS1ize configures the stack size of the custom command identified by an index
from the list of custom commands. If there is only one custom command in the list,
the index is 0.

If the required stack size of the custom command is larger than 1024 bytes, the stack
size must be set after the DAPL custom command list has been defined using
Dap1CCList. The DAPL custom command list is then sent to the iDSC with the
new stack size when the user invokes CommandsLoad or StartAcquiring if
DownToad is enabled.

See Also
Dap1CCList property, Download property

DSC Component Programmer’s Interface 385

Section IV. Installation and Setup

Section IV. Installation and Setup 387

11. iDSC Board Hardware Architecture

The iDSC board hardware architecture is partially defined by a set of features
common to all models. Additionally, the architecture supports a number of options
which differentiate various models. Among the common features that characterize the
iDSC board architecture are the structure and division of labor between the analog and
digital filters, the ability to self-calibrate using an on-board reference, isolation of the
analog front-end from the PC ground and the ability to synchronize multiple boards
for simultaneous sampling. Some of the characteristics that vary from model-to-model
include the system bus (ISA and PCI), input voltage range, and maximum sample rate.

While configuration of the iDSC board hardware is accessible only through the
programmer's interfaces described in an earlier section, an understanding of the
architecture will help you achieve maximum performance out of the iDSC board.

Hardware Overview

The iDSC board hardware combines the best of analog and digital design to provide
powerful capabilities at a very reasonable cost. Each of the eight analog front-end
sections has an input buffer amplifier, an analog anti-aliasing filter, and an
oversampling analog-to-digital converter. Two 100 MHz digital signal processors
provide programmable lowpass filtering with extremely sharp cut-off characteristics
and near-perfect phase linearity. An Intel processor handles data buffering and PC
communications.

The iDSC board's exceptional versatility results from combining fixed-cutoff analog
anti-alias filters with 64X oversampling sigma-delta analog-to-digital converters and
configurable digital filters. The very high constant acquisition rate necessary for
oversampling greatly simplifies the design of the analog anti-alias filters. Once the
data is digitized, the DSPs filter and decimate the data to obtain the desired sampling
rate, while preserving freedom from aliases. The DSPs also implement the user's
lowpass and bandpass filter specifications. The hallmark of the iDSC board's
flexibility lies in the ability to independently specify the sample rate and, on a
channel-by-channel basis, the filter cutoff frequencies.

The components of the iDSC board architecture provide the necessary bandwidth for
true 16-bit programmable filtering with attenuation of at least 96 dB for all
frequencies above the effective Nyquist frequency. The analog-to-digital converters of
the iDSC board operate internally at a fixed sampling rate of 9830400
samples/second. After decimation by 64 within the analog-to-digital converters, the

iDSC Board Hardware Architecture 389

digital signal processors receive output data at a fixed sampling rate of 153600
samples/second. The digital signal processors then filter and decimate from the raw
data rate of 153600 samples/second down to the effective sampling rate, if lower. The
effective Nyquist frequency, the highest frequency which can be resolved by sampling
at the effective sampling rate, is half of the effective sampling rate.

Features of the iDSC board include:
* Guaranteed Anti-aliasing
 Variable Sampling Rates from 8 to 153,600 Samples/Second
* Independently variable cut-off frequencies from 2% to 80% of Nyquist
* Very steep transition bands: -96dB/quarter-octave typical
* Eight simultaneous, dedicated channels
* 16-bit Resolution
* Linear Phase Response
* 300 Volts input signal isolation from PC ground
» Simple User Interface---consistent across all applications
* No programming required to configure low pass and bandpass filters

To achieve this performance, the iDSC board uses an impressive array of hardware
including:

« 8 fourth order analog anti-alias filters

* 64-times oversampling 16 bit Sigma-Delta analog-to-digital converters

* A 96 MHz Intel 486 DX4 processor

* 16MB RAM on the iDSC 1816

* 4MB RAM on the iDSC 816

* Two 100 MHz Motorola DSP56303 digital signal processors

390 iDSC Board Hardware Architecture

iDSC Board Block Diagram

DATA

dnalog LwlAnti-alias|wl6-bit Z-A

gt (3
el vl filter AT

[l

chamels) | Lot aliaslell6-tit T4

filter AT

Felfnti-alias| Gl16-bit Z-4
filter AT

_.,Anti-a.lias* 16-hit T-h
filter 2T

el stiti-alias| [16-kit 2-A
filter AT

| unti-alias], [16-vit 54
filter D

Fednti-alias| J16-bit Z-4
filter AT

_p|&titi-alias| g 16-hit B-A
filter 2T

¥+

Or-board calibration resoutce

CGeneral purpose timing chantels

FPG4

mewree | R0 | [Inte]
manane | lsfrer | 426034
(06
WHE)
]
eann oz | [FIFO
20t Ha) buaffer
Hi

iDSC Board Hardware Architecture

Hoast
P

DRAM

Optical Isola:Ltion Barrier

391

Warm-up and Self-Calibration

The iDSC board architecture provides for manual calibration of a single on-board
voltage reference. The recommended calibration interval for this reference is one year.
Microstar Laboratories provides this calibration service at a nominal fee.

Using this reference, an iDSC board performs a self-calibration of offset and gain on
each channel the first time it is initialized in a PC. Self-calibration can also be initiated
under software control. This procedure takes well under one minute.

Best performance is obtained when self-calibration is initiated after the board reaches
a stable operating temperature. The length of time required to stabilize depends
greatly on the PC and the environment in which it operates. It is recommended that
sampling be initiated and other operating conditions be duplicated as closely as
possible for 30 minutes to 1 hour prior to initiating self calibration. If operating
conditions do not vary significantly from day to day, self calibration will need to be
run only infrequently thereafter. Some experimentation may be required to determine
the self-calibration interval appropriate for your acquisition system.

Isolation

The iDSC board's entire analog section, including the analog-to-digital converters, is
isolated from the digital section and, therefore, from the PC's ground. The analog
section "floats" with respect to this ground. By providing a low-impedance ground
reference with your input signals, you completely determine the ground potential of
the analog section. Although all eight channels are provided with a separate ground
connection, all eight grounds are joined together at the iDSC board's external J1
connector. Please contact Microstar Laboratories for alternative solutions if you have
balanced differential signals for which this arrangement is unsuitable.

Components which provide optical and galvanic isolation, and the physical layout
tolerances are designed to provide a minimum of 300 Volts isolation between the field
(sensor) system and any power or ground rail on the PC. You should consider
carefully whether it will be necessary to provide a weak path for current to flow
between your sensor system and the PC ground to prevent the potential difference
from exceeding this limit.

An important consideration in maintaining the 300 Volt Isolation is the spacing
between the iDSC board and any board present in an adjacent slot. Below 10,000 feet
mean sea-level (pressure) altitude, the minimum clearance required to maintain this
level of isolation is .064 inches of free space, slightly more than the thickness of the

392 iDSC Board Hardware Architecture

printed circuit boards. Failure to observe this clearance may result in extensive
damage to the circuit boards and the PC.

Warning: Improper installation of equipment may result in fire, electrical shock, or
other hazards.

When multiple iDSC boards are present in a single PC, their respective analog
sections are floating with respect to each other except for two cases. The first, an
external connection, occurs when the input signal grounds are related through the
system of field sensors. The second case arises when the boards are synchronized for
simultaneous sampling by means of the synchronization cable. This cable joins the
analog ground planes of the boards and thus joins the grounds of the input signals.
Again, please contact Microstar Laboratories for alternative solutions if this
arrangement is not suitable for your application. Note that in both cases, the joined
analog sections are still isolated from the digital section and PC ground.

Simultaneous Sampling and Synchronization

By design, the iDSC board architecture samples all eight channels simultaneously. It
is possible to build larger simultaneous acquisition systems made up of iDSC boards
and even mixed systems of iDSC boards and DAP boards by means of
synchronization cables. In an iDSC board-only system, boards are synchronized with
the MSCBL 078 cable. One software-designated board acts as the timing controller
and all other boards connected by the cable are configured as subordinates to the
controller. Details of DscMasterSet and related functions may be found in the
“Programming Interfaces” section of this document.

For information on synchronizing a mixed system of iDSC boards and DAP boards,
please contact Microstar Laboratories.

iDSC Board Hardware Architecture 393

12. Installation

This chapter contains detailed installation instructions for the iDSC 1816 and
iDSC 816 boards, and the iDSC board software. The Advanced Installation Options
chapter provides additional information for the iDSC 816 in nonstandard PC
configurations.

Installing an iDSC board involves the following steps:

1. Installing the iDSC 1816 / Installing the iDSC 816
2. Installing the iDSC Board Software
3. Testing the Installation

iDSC Board Handling Precautions

Static control is required for handling all electronic equipment. The iDSC board is
especially sensitive to static discharge because it contains many high-speed analog and
digital components. To protect the iDSC board, observe the following precautions:

* Wear a grounding strap when handling the iDSC board. If it is not possible to use
a grounding strap, continuously touching a metal screw on a grounded PC offers
protection.

« If it is necessary to transport the iDSC board outside of the PC, be sure to shield
the iDSC board in a conductive plastic bag. If a conductive bag is not available,
shield the iDSC board by wrapping it completely in aluminum foil. Do not ship or
store an iDSC board in plastic peanuts without suitable shielding.

Static damage to analog components can cause subtle problems, including oscillation,
increased settling time, and reduced slew rate. If you suspect that an iDSC board has
been affected by static discharge, return it to Microstar Laboratories for testing, repair,
and quality control.

Installation 395

Installing the iDSC 1816

System Hardware Requirements

The iDSC 1816 is compatible with 5V 32 bit PCI bus slots that support bus-mastering
in 486/Pentium/Pentium Pro/Pentium II/Pentium III/Pentium 4/Xeon/Athlon and other
PC AT compatible computers.

Installation Steps

Caution: Do not install the iDSC 1816 while the PC is on.

1. Make sure that connections with a high voltage potential are disconnected or turned
off.

2. Turn off the PC and remove the PC's cover.

3. Insert the iDSC 1816 into any free PCI slot.

4. Screw down the back panel of the iDSC 1816 to the back chassis of the PC.

5. Make sure that the iDSC 1816 is properly installed before turning on the PC or
connecting signals or cables to the iDSC 1816. Refer to the Isolation section in the
iDSC Board Hardware Architecture chapter.

Warning: Improper installation of equipment may result in fire, electrical shock, or
other hazards.

The iDSC 1816 requires approximately 17.5 Watts from the PC's power supply. If the
system behaves erratically with the iDSC 1816 installed, the PC may need a larger
power supply.

396 Installation

Installing the iDSC 816

System Hardware Requirements

The iDSC 816 is compatible with 16 bit ISA or 32 bit EISA bus slots in
486/Pentium/Pentium Pro/Pentium II/Pentium III/Pentium 4/Xeon/Athlon and other
PC AT compatible computers.

Standard Configurations

The iDSC 816 is factory-configured to use interrupt 2 and I/O addresses in the range
220-22F (hexadecimal). This configuration does not conflict with most standard PC
hardware. If you have nonstandard PC hardware or any installed cards that use the
same interrupt vector or I/O address as the iDSC 816, please read the
Advanced Installation Options chapter before preceding with installation.

Note: Some sound cards use I/O addresses in the 220-22F range. If your system has a
sound card, check the configurations.

Interrupt and I/O address conflicts may cause subtle or obvious problems in your PC.
If your PC does not operate properly after installing the iDSC 816, check that there
are no configuration conflicts.

Installation Steps

Caution: Do not install the iDSC 816 while the PC is on.

1. Make any necessary changes to the hardware configurations. Interrupt vector and
/O address information are provided in the Advanced Installation Options chapter.

2. Make sure that connections with a high voltage potential are disconnected or turned
off.

3. Turn off the PC and remove the PC's cover.

4. Insert the iDSC 816 into any free ISA slot.

5. Screw down the back panel of the iDSC 816 to the back chassis of the PC.

6. Make sure that iDSC 816 is properly installed before turning on the PC or
connecting signals or cables to the iDSC 816. Refer to the Isolation section in the
iDSC Board Hardware Architecture chapter.

Warning: Improper installation of equipment may result in fire, electrical shock, or
other hazards.

Installation 397

The iDSC 816 requires approximately 17.5 Watts from the PC's power supply. If the
system behaves erratically with the iDSC 816 installed, the PC may need a larger
power supply.

Several iDSC Boards

Many iDSC boards can operate simultaneously in one PC. Running several boards in
parallel increases the maximum sampling rate and the real-time processing power of a
system. The Accel32/DAPcell server supports up to fourteen iDSC boards in one PC.
However, the number of iDSC boards is limited by the number of available PCI /ISA
slots in the PC.

Installing the iDSC Board Software

When you insert the DAPtools CD into your CD-ROM drive, the Microstar
Laboratories Setup Launcher will automatically run. When you select the 'Getting
Started' link, you will obtain instructions for installing iDSC board software.

If the Windows hardware installer asks for the INF file, you can find the
MSLACOM.INF file at the root of the DAPtools CD.

You can obtain more detailed instructions for installing iDSC board software under
various operating systems by selecting the 'Documentation’ link, followed by
'DAPtools Basic|Accel32|Installation'.

Testing the Installation

To test the installation, run the DSCview.exe program. Begin acquiring data by
selecting Start! from the main menu and verify that the data are showing up in the
graph or table window. An error message will be displayed if there was a problem
with the installation.

Troubleshooting the iDSC 1816

If the Accel32 Service will not start, check the host PC hardware manual to make sure
that the particular PCI slot that the iDSC 1816 uses supports bus-mastering. If
necessary, switch to a different slot.

398 Installation

13. Advanced Installation Options

Installation for the iDSC 1816 and iDSC 816 in standard hardware configurations is

described in the Installation chapter of this document. This section covers iDSC 816
installation with nonstandard configurations.

Nonstandard Configurations

The iDSC board uses two resources from the host PC:
* an interrupt vector
* arange of I/O addresses

The iDSC board allows several interrupt vector and I/O address selections. The

interrupt vector may be 2, 3, 4, 5, 11, or 15. When selecting an interrupt vector, note
the following interrupt vectors used by standard cards:

EGA/VGA

serial port COM2

serial port COM1

parallel port #2

hard disk controller on IBM XT
parallel port #1

secondary IDE controller

—_— QLT D BN

5

The iDSC board comes configured to use interrupt 2 since this interrupt does not
conflict with most standard hardware. If you have any other cards installed, determine
the interrupts that the cards use and select an iDSC board interrupt number distinct
from these. The host computer may lose access to one of the serial COM ports or one
of the parallel ports, depending on the selection.

To change interrupt vectors, locate the twenty-pin HOST CONFIGURE (J10)
connector directly above the gold fingers on the iDSC board printed circuit board.

1 23456 78 918
1 23 456 78 910
J10 HOST CONFIGURE

Advanced Installation Options 399

The six possible interrupt selections are:

Interrupt Vector
2

W\ AW

—_—
DN —

Jumper
pin pair 9
pin pair 6
pin pair 7
pin pair 8
pin pair 5
pin pair 4

To change the interrupt, remove the jumper and replace it according to this table. Note
that exactly one of the pin pairs 4, 5, 6, 7, 8, and 9 should be connected.

The iDSC board comes configured to use I/O addresses in the range 220-22F
(hexadecimal). To change this range, change the jumpers on the HOST CONFIGURE
connector. Pin pairs 1, 2, and 3 select the I/O address of the iDSC board according to

the following table:

I/O Address Range

220 - 22F
230 - 23F
240 - 24F
250 - 25F
320 - 32F
330 - 33F
340 - 34F

400

Jumpers

1,2,3
2,3
1,3
3
1,2
2
1

Advanced Installation Options

Multiple Board Installation

Up to fourteen iDSC boards can operate simultaneously in one PC. Running several
boards in parallel increases the maximum sampling rate and the real-time processing
power of a system.

Microstar Laboratories iDSC boards are also compatible with Microstar Laboratories
Data Acquisition Processors. Any combination of up to fourteen iDSC boards and
DAP boards can run as one system in a PC.

Each iDSC 816 board requires one ISA-compatible slot. All of the iDSC 816 boards
and ISA-compatible DAP boards in a PC share just one interrupt line; no DMA lines
are required. The iDSC 816 boards and ISA-compatible DAP boards are distinguished
from one another by their I/O addresses. Before installing iDSC 816 boards in the PC,
select a distinct I/0 address for each board. Set the I/O addresses with the jumpers on
the HOST CONFIGURE connector. Information on the HOST CONFIGURE is provided
at the beginning of this chapter.

Note: Pin pair 10 of the HOST CONFIGURE connector sets the level of the PC’s
interrupt line. Pin pair 10 must be connected for one ISA-compatible board in a PC,
and must not be connected for all other iDSC 816 boards and DAP boards.

Once the iDSC boards have been properly installed, run the Accel32 / DAPcell server
setup as described in the Installation chapter. It will auto-detect the iDSC board
system configuration on the host machine and also auto-detect any DAP boards on the
system.

Advanced Installation Options 401

14. Physical Interface

This chapter describes the physical interface of the iDSC board.

Physical Interface 403

Input/Output Connector

Analog and digital voltages connect to the iDSC board through a 50-pin connector on
the back panel of the PC. This connector is located on the edge of the iDSC board and
is labeled J1 IN/0UT. J1 has a double row of pins on 0.050 inch centers. The
connector is AMP part number 787394-5. This connector mates with discrete wire
connector T&B part number HFMO50A or insulation displacement connector AMP
part number 786090-5. J1 mates with Microstar Laboratories cable numbers
MSCBL 047-01, MSCBL 048-01, MSCBL 049-01K, MSCBL 050-01, and
MSCBL 051-01K.

Looking at the input/output connector from the back of a PC, the pin numbering is

iDSC -18V 26 . ¢ | 25 iDSC +18V
RESERVED 27 . * | 24 RESERVED
RESERVED 28 . ¢ | 23 RESERVED

A7+ 29 . ¢ |22 A7-

A6+ 30 . ¢ |21 A6-

A5+ 31 . * |20 A5

Ad+ 32 . > |19 A4
A3+ 33 . ¢ |18 AS3-
A2+ 34 . e |17 A2-
A1+ 35 . ¢ |16 Al-
A0+ 36 . ¢ |15 AO0-

RESERVED 37
RESERVED 38
RESERVED 39

+5 VOLTS 40
DIGITAL GROUND 41
RESERVED 42

14 ANALOG GROUND

13 EXTERNAL TIMING CHANNEL 0 - INPUT
12 EXTERNAL TIMING CHANNEL 1 - INPUT
11 +5VOLTS

10 DIGITAL GROUND

9 RESERVED

RESERVED 43 . ¢ |8 RESERVED
RESERVED 44 . ¢ |7 RESERVED
RESERVED 45 . ¢ |6 RESERVED
RESERVED 46 . ¢ |5 RESERVED
RESERVED 47 . > |4 RESERVED
RESERVED 48 . ¢ |3 RESERVED
RESERVED 49 2 RESERVED
RESERVED 50 . ¢ |1 RESERVED

/

Note: Use the pin numbering on this chart, rather than numbers which may be found
on your connector. Connectors from different manufacturers are not numbered
consistently.

404 Physical Interface

Analog inputs are indicated by A0+ through A7+; their corresponding ground inputs
are AQ- through A7 -.

External timing channel inputs are indicated by EXTERNAL TIMING CHANNEL @ -
INPUT and EXTERNAL TIMING CHANNEL 1 - INPUT. These correspond to Tc® and
Tcl in software.

Pins 11 and 40 connect to the isolated 5 volt digital power supply. Pins 25 and 26 are
+18 volt and -18 volt supplies respectively. This information is advisory only. No
current is available from these pins. iDSC board performance is unspecified if current
is drawn for any purpose.

Pins 1,2,3,4,5,6,7,8,9, 23,24, 27, 28, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49,
and 50 are indicated by RESERVED. These pins are reserved future expansion and
should not be used.

Physical Interface 405

Analog Inputs

Warning: Measuring signals with a high voltage potential from the PC supply is
always hazardous. The iDSC board and all cables and boards connected to the
iDSC board should be considered hazardous whenever any connections are made to
a high voltage potential.

Each analog input on the iDSC board has dedicated anti-alias filter and analog-to-
digital conversion circuits. All inputs are optically and galvanically isolated from the
PC power supplies and ground. Each iDSC 1816 channel provides:

 High input impedance

* Single-ended inputs

* Input range of 5 Volts or +10 Volts, software selectable
* Absolute maximum +40 Volts relative to signal ground

* 300 Volts isolation from the PC power supply
 Simultaneous Sampling

Each iDSC 816 channel provides the same features except:
* Input range is fixed at either =5 Volts or 10 Volts (model dependent)

406 Physical Interface

The iDSC 1816 analog input signals pass through analog multiplexers used for self-
calibration and then on to the high-impedance inputs of the FET op amps. Since the
multiplexers of the iDSC 1816 have channel protection built in, it does not have
separate channel protectors. The DC input impedance is very high; the AC input
impedance is dominated by the capacitance of the channel protector and switch or
multiplexer. The iDSC 816 analog input signals pass through channel protectors and
analog switches used for self-calibration. Following this they pass to the high-
impedance inputs of FET op amps.

Input R1 R2 To FET amplifier
A |
l Cl l C2 l C3
The following table shows approximate typical resistance and capacitance values for
the equivalent circuit of the figure above:

Component iDSC 1816 iDSC 816
R1 N/A 80Q2
R2 400Q2 250
Cl N/A 5 pF
C2 5pF 35pF
C3 30 pF 55 pF

Physical Interface 407

iDSC Board Synchronization Connector

A synchronization connector (J3 on the iDSC 1816 and J100 on the iDSC 816),
allows the synchronization of several iDSC boards to deliver simultanecous sampling
with respect to one other. By connecting the synchronization connector of each iDSC
board using a MSCBL 078 cable available from Microstar Laboratories, the iDSC
boards can be synchronized together. Up to fourteen iDSC boards can be
synchronized this way. To enable master/slave synchronization in software please
refer to the Programming Interfaces section of this document. This connector should
only be used for synchronizing iDSC boards together. The iDSC 1816 also has an
External Synchronization Connector, J2, described below.

The full part number of the cable is MSCBL 078-xx-L0.8 where xx specifies the
number of slave processors. The MSCBL 078 is compatible with both the iDSC 1816
and the iDSC 816. It replaces the MSCBL 014-xx-L.0.7 which is incompatible with
the iDSC 1816.

iDSC 1816 External Synchronization Connector

Note: When using an iDSC 1816 as a remote master with an MSXB 045
synchronization board, connector J2 1is used to control the MSXB 045
synchronization board. Therefore it is not available for other applications. See the
documentation for the MSXB 045 synchronization board for details on using this
product.

An external synchronization connector, J2, provides a means to synchronize DAPs or
other measurement circuits with an iDSC 1816. This connector is not available on the
iDSC 816. The synchronization signal is a 153.6 kHz word clock with a 50% duty
cycle. The samples aggregated to form a single output word are collected at the 64X
oversampling rate between the rising edges of this clock. The clock output has CMOS
levels and can source 1mA, sinking up to 12mA.

The J2 connector is located between the PCI carrier board and the daughter card.
Viewed from above with J1-end of the board closest to you, the pin numbering is

[]| 1 Word Clock
[] 2 Ground
D 3 Reserved

408 Physical Interface

For additional information on using this connector and/or synchronizing a mixed
system of iDSC boards and DAP boards, please contact Microstar Laboratories.

Physical Interface 409

Index

ADOUL ThiS DOCUMENTccviiiiiiceiieiee ettt ettt e et e et et e ereeeaeeeteeereeereeeareeneeenns

AddOne........cccoreurvenennn

AddOne method......

Address property.......c.cceceeereeneee.

Advanced Installation Options.....

Analog Inputs........ccccevevenecncnne.

App01 - BASIC.......

App02 - GRAPH......

ADPDPO3 = LOG ottt ettt sttt et be et b nae s
APDPO4 - LOGV W .ttt sttt ettt st ettt sbe e nnees
AppO05 - DaplFFT....

APPOO = DAPICC ...ttt sttt b e bttt s et be et aben
App07 - Disk Logging (1 IDSC) ...cuiieieiieiieiieiereeeiee ettt sttt aae e 58
App08 - Disk Logging (2 iDSC with synchronization)............c.ceoeeoeeirererenenenieieceesceeenene 58
APPO9 — A Group O IDSC...einieieieieiieiee ettt sttt neeneas 59
ATEEIIUATION.cveiiti et ettt ettt e et e et e e e e et e eaeeeteeeteeeteeeeseeeaseeeseeenseeesseenseeeseeenseeeseenn 14,23
ATENUALION PIOPEILY ..veuvereeneenienietietieteetesteste et e e sttt seeetesbesteee st e st eseeseebeseesbeseeneenes 257,274,278
BIOCK DIAGIAIN ...ttt se et b et et e e eseeneeneeaennens 391
BIOCKSIZE PIrOPEILYcviiviieieieiieieetieieete ettt sttt 258,274, 280, 353
BufferAvail MEthOd........c..oooviieiiiieeeee e 253,272,281
BufferGet Method.ccoeiiiiiiiiiee e 253,272, 282,284
BufferGetEnabled property ... 253,272,284
BufferGetEX methodc..cooveerviveniniiineiniccncenccncceeeen 252,253,259, 272,281, 284, 285
Calibrate Method...........cooveiiuiiiiiecie e 248, 253,272,287, 363
Channels 37,42,43, 46,47, 48, 49
CommandsLoad ..o 250, 303, 381, 383, 384, 385
CommandsLoad methodccoooeeveeiiiiiiceeceeceeeeee 248,253,272, 285, 288, 321, 363
Component library

ConfigDIalogOPHIONSouveuieiieiieiietieteete ettt ettt s ens 253, 272, 289, 293
ConfigDialogOPtioNSs PIrOPEILY.......ceruiriirierieienieiieteettetesteeteteteteseene bt etesbessesaeeeeeseeseaneeeeanens 289
ConfigDIalogSNOW.couiiiieiieiieiieiee ettt 289, 290, 305

ConfigDialogShow method253,255,272,273, 291, 294, 315, 378
Configuration Window

Copyrights and Trademarksccooiiiiiiiiiieee e
COUNE PTOPLILY c.vvervienriiienieriteteeitenteete sttt siee st sttt sbee b e seeeneennes

Creating a DSCC Application
Creating @ DSCIO APPLICAtIONvouieiieiieiiitiiieieeieet ettt eene
Creating an iDSC Board Application in HP VEE.........cccoocooiiiiiiiieceeeeee
Creating an iDSC Board Application in LabVIEW
Creating an iDSC Board Application in LabWindows/CV1........c.ccocooiieiiiiiiininineeeeee 75
CUSEOM COMMEANAovvvieevieceee ettt ettt et e et e eeteeeteeeteeeeeeeaeeeteeeaeeeseeenneeeseeenseenseean 232, 381
Custom Command SUPPOLL........ccuiruirerieieieiieiieeete sttt ettt st st eseeeeseeneeneseene 232, 381

Index 411

CutoffFreqHigh PrOPEILYc.coiviiviriiriiiiicieeee ettt 257,274,297

CUtOfTFTEqLOW PIOPEILYcoveivieiiriirtitiieteieitet ettt 257,274,298
CutoffSIOPEHIZh PrOPEILYoeveeeieiieiieieeeee et 257,274,299
CutoftSlopeLow property 257,274,301
DAPL custom COMMANAScc.eeueieureiriniiniineneteteeet ettt sttt ettt saennens 106, 246
DAPL SUPPOTT ...ttt et st ettt et st e sat e ebeesaaeenneens 110, 250
DIAPL EEXL .ttt ettt ettt sttt st e 106, 110, 246, 250
DAPICCLISE ..ottt ettt ettt st et et ebeesaesbeenaesbeeneenaean 381, 382, 383, 385
DaplCCList property..

DAPITEXE ...ttt sttt

DaPITEXE PIOPEILY ...cuevveteveetirtintenteteit ettt ettt ettt et sb e est ettt see b e s eneeseenesaennens
DASYLAb EXAMIPLES.......oouiririiniiiiiiieieiicetesterte ettt sttt e
Data FOIMALcc.ooiiiiiiiiiiiiiecce et st
data track

dAtA tTACKIIIE «..vevititiieiieee ettt ettt sttt ettt ea et
DEIELEOMNE ...ttt ettt sttt ettt sttt ettt b e b ettt

DeleteOne method .. . 255,273,296, 304, 333, 334

Disk Log Options..........cccc.... ... 37,48, 49
Disk Log Options|Close File.......c..couciiiiiiiiiiiniiiciiicieseneeeeee et 49
Disk Log Options|FOIMAaL.........coeruirieieiiiiinienienieetet ettt sttt e 49
Disk Log Options|Open Filec..cccoieiiiiiiiiininiieicieen ettt 49
DiSK LOZ WINAOW.......eeiiiiieieiiieieeiieie sttt sttt ettt ettt et enae e esaeenes 35,37, 48, 49

CRANNEIS ...t e e et e et e e ee e e e e eaaeeeeeareeeeaeeeeenaeeeeeareeeeneeeenes 49
DISKLIOE .ttt b ettt e e s be e e bt en b e h e et e e heenbe bt et e he et e eneenbeenes 70
DLL MEX REIEIENCE.cuveiiuiiiiiiiiiieiie ettt ettt ettt e eteeeaaeeveeeaseeneesaseeseeeaneean 88
DLL RETIEIENCE ...ttt ettt ettt ettt ettt et e b e saaeebeesaseenseeeaseenseesaseeseeeseans 60
Download 381, 382, 383, 384, 385

Download property.... ... 384
DSC Component..........ccoceeeveenueennen. 241
DSC Component Obsolete INterface.coevevueieieiiinineniicieeeeeeeseeeeeeeee s 380
DSC Graphical DESIZN.......cccouiriiriinieieiriiiiniententee ettt sttt ettt 11,39
DISC PIOPEILY .ottt 255,273, 305

DscAddressGet 130, 161
DscAddressSet..... .. 131, 161
DSCBUTTEIAVAILL.......ooiiiiiiiiciicce ettt e b e et eebe e raeebeesaseeseeennas 132
DSCBUTTEIGELeeeiiiiicieeee ettt e b e et esaaeeneaas 133, 137, 285
DScBUfferGetENabledGetccueiiiiiiiiieiiciie ettt 135
DScBUfferGetENabledSet...........oocuiiiiiiieiieieeie et ettt 136
DscBufferGetEx ..

DSCC INLEITACEeeuvieeiieieecie ettt ettt ettt e e e e ae e eabeesaseebeeesaeesbeesaseensesenns
DSCC Interface EXAMPIESccvevuireieiiniieieieeieieeit ettt sttt et sreesee st ennenee e 242
DSCC INrOAUCHIONviiiiieiiieeiie ettt et ettt et ett et eetbeeeteeeabe e aeeeaseesaseeseessseeseesaseaseeannas 241
DSCC UNC ...ttt ettt ettt e et e et esebe e beesaseeseesabeeseeeaseesaeesseesseasseesnnas 247
DscCalibrate 108, 139, 199
DscCommandsLoad...........cccooeveevieieonieieereeeecreeieereennn 108, 140, 152, 154, 159, 199, 232, 234
DscConfigDialogOPHIONSGEL.......ccueeveriieieiieierieeieee ettt ettt ee s saesaeeseeneas 141, 143

412 Index

DscConfigDialogOPLIONSSEL.......cevuieiieiieieeiieieriteie ettt ettt et sttt seeenees 141, 142

DscConfigDialogSROWcc.eecviriiiiiiieiieierieeee et 141, 142, 143, 144
DSCCONTIGREAA ..ottt st s 147, 149, 151
DSCCONTIGWIILE ...ttt ettt et st e e et e b ene 147,149, 151
DSCCONTIGWIIEESIZE ..ovvivieniieiieieeieerieee ettt sttt ettt enne e 147, 149, 151
DScDaplCCDOWNIOAAGELecuveiieiieiieieeiieie et ete sttt et sttt et seeebe s enseeneennes 232,233
DscDaplCCDOWNIOAdSEt......c..ooueeieriieiieiieieceeieeeee e 232,234, 235,237,239
DSCDAPICCLISIGELouvevieneieiieieeiteie ettt ettt ettt ettt eeetesteeeeebessaenaeeneenaeens 232,235,236
DscDaplCCLIStLENGtRGETcveuveuieiiiiiiiiiierteieiceetecee sttt 232,236

DscDaplCClListSet............ et e eeteeeheeeeeeeteeeteeereeebeeeheeebeeateeebeeataeeateeaseeebeenareans 232,237,239
DSCDAPICCSLACKSIZEGEL ..ottt ettt sttt sttt 232,238
DSCDAPICCSLACKSIZESEL.......evieiieiieiieiee ettt sttt sttt s 232,239
DSCDAPITEXEGEL.....eeieneieiieiieiieie ettt ettt ettt ettt st e besaeetesseeseeneenee 111,152,153
DscDaplTextLengthGet.........cccoueieiiiiirinienieicieeeteeee sttt 111,153

DscDaplTextSet
DscFilterIndex................

DSCFIlterParametersGeLcueeveeieriieieniieiesieeieie ettt
DSCFIterParametersSetoeveriieieriieieieeieieeee ettt st
DscGroupAddOne
DscGroupConfigDialogShow
DscGroupConfigRead.................

DSCGroupConfigWIILc.eeuiiuiririiniinieiceeetreeese ettt
DscGroupConfigWIIteSIZecocevuiriiririinieiiicieeee sttt
DSCGIrOUPCOUNL ...c..eviiiiiiiiiiieiicic ettt s
DSCGIOUPDEIAYcouiriitiiiiiiciteiietteter ettt ettt st
DscGroupDeleteOne
DSCGIOUPDISC ...uiiieiiiiieiecitet et s s
DSCGroUpHANAIECIOSE.cveeuieeieiieeiieieeiieie ettt et ettt e st e st et e steentesaeenneseeens
DScGroupHandIEOPeNc..cuveuiiiriiririerietetctetee ettt
DSCHANALECIOSE. ...ttt ettt ettt ettt ettt et e e saeentesbeestesbeenbesseennesseennensaens
DscHandleOpen..........

DscHardwareStop
DSCIAGEL ...ttt e .
DISCIASEL ...ttt ettt et et sttt e s et e s et e b e eat et e sae et e eatenbesheebeennenteens
DscINpUtRANGEGELc..eouviiiiiiiiiiiiicieiccte ettt e 125, 165
DscInputRangeSet...... ... 125,166
DSCIODLL...............
DSCIO Function Summary ..
DSCIO Interface Examples
DSCIO INrOAUCTION. ..c..eeuieeiietieiieie ettt ettt ettt et et esteestesaeeneesseentesseensesseensenseensesseens
DSCIO Obsolete Interface ...
DSCIO Structure Summary..
DSCIO UNC.....ccceoevvennneee
DSCLAStEITOITEXEGEE ..ottt st
DSCLAStEITOITEXESELciiiiiiiiiiiiiciic ettt
DISCMASEEIGEL.......cuviniieiiiiieiiiiietee ettt sttt

Index 413

DISCIMASLEISEL ...t ettt e ettt eeeeeae e e e e e eeettaeaeeeeeeeasanaeeeeeeeeaaresaeeeeeennnnnes 108, 170

DSCMEMOTYUSEA ...ttt ettt sttt et sttt e st e ste s bt et e sbeentesbeentesbeeseenseensansenns 171
DSCONSYSIEMEITOISEL ..c...eiiiiiiiieiie et sttt 120,172
DscOperateModeGet

DscOperateModeSet.......

DscPinEnabledCount
DSCPINENADIEAGELc..iouieieiiieiieiieie ettt ettt ettt sttt ettt st besbeenae bt enseseeens
DSCPINENADIEASELeouiiieiieieieieeiee ettt sttt ettt saeenbeseeens
DscPinToFilterMapGet..... .179
DscPinToFilterMapSet 180
DscRemoteMasterGet..... ... 181
DSCREMOLEMASLEISEL.......eeeiiiiiiieiti ittt ettt ettt e st ebeeseees 182
DISCRUNNINEG ...ttt ettt ettt ettt et e st e eat et e este bt entebeentebeeneenbesseenseensanseans 183
DscSampleRateGet 118, 184
DscSampleRateSet..... ... 108, 185
DscScansDiscarded...........

DScServerDiSKLOGBYLESc.eevitieieiiieieete ettt sttt sttt sttt s eneas
DscServerDiskLogConfigGetc..cceeiveririnenenienieicieieencseseeeeen
DscServerDiskLogConfigSet......

DscServerDiskLogEnabledGet ...

DscServerDiskLogEnabledSet........
DscServerDiskLOgFIIENAMEGEL.........ecvervieieiieiieiieiterie ettt sttt eseseeens
DscServerDiskLOGFIIENAMESELccueiuieiirieiieiieie ettt sttt st see e
DSCSIAVECOUNL ..ottt sttt ettt et e st e et esae e esbeentesseensesseensenaean
DSCSIAVEHANAIE.......c.eeetieiieieeiie ettt
DSCSTATtACCUITIIE. . .eeuvievrenieeieetietteteettete et eteettebesteetesteenbesteentesseensesseensesseensensesseenseensanseens
DscStartAcquiring 108, 110, 139, 140, 152, 154, 159, 183, 188, 191, 193, 194, 199, 232
DISCSTATtACUITIIEG ...vvenvieetenieeiieteettesteeteete et eteettete s it etestt et esteentesseensesbeense st ensessessnenseensanseens 200
DSCSLOPACQUITING. ..ottt ettt ere et ee s eseeneenes 108, 110, 123, 183, 192, 200
DscStructPrepare............ ... 113,123, 126, 137, 189, 191, 201
DSCSySteMEITOIPTOCESSc.viiiiiiieiiiiiiciiic et 120, 202
DscSystemErrorProcess Methodeeveuieieriieiiriieiesieeeee et 172
DSCTCENADIEACOUNLcouieiieiieiietieiesteeiet ettt ettt ettt ettt ettt este s bt e e sreenseeseensesseens 203
DscTcEnabledGet......

DscTcEnabledSet....

DscTcMaximum
DSCTCWIALN ...ttt sttt ettt s b et esbe et e bt et e sbeesaenseensanseens
DScTransSferFUuNCiONGEL..........cecvieuieieriieieriieie ettt ettt ettt et st testeeseesbeennenseens 209
DSCUNIESTEPGEL ...ttt ettt et sttt et e ste e besatenbesseensesseenbesseensesseensesseans 210
DScUNItSEPLENGRGETLc.eeieieiiiieieciieieeeete sttt sttt et be et e st estesaeenseseeens 211
DSCview Interface

DSCXDCALDIALE ...ttt ettt st
DscXbEnabledGet

DSCXDENADICASELeeuiieieiiecieeeettee sttt ettt ettt et sttt ettt e st ente bt ennenaeens
DSCXDPINCONTIZGEL ...ttt ettt sttt ettt enaesbe e e 125, 126, 215
DSCXDPINCONTIZSEL...c..vivieiiieiieiieiieie ettt sttt st esae b enne e 125, 126, 216

414 Index

BVENES. ..ot
External Board Parameters
Input Offset
INput OffSet RANEE.c..c.eiuiiiiiiriiiiccer ettt 31
INPUL RANGE ..o 31
Input Type31
Output Excitation... .32
External Board SCIEENc.cooiiiiuiiiiiiiiccie ettt e ebe e eneeaes 11,16, 17
ExternalBoard Property......c..cocoveceeirireneniinieniereieeee ettt 252, 253,273,306
FILE oo e et e eeraaeeeaaee s 36, 37
FileFlagsAttributes property258,274, 307,353
FileName propertyccecereereerieeriereesienieenieseesieeeeseeseeneeeseseeens258,274, 309, 353
FileShareMode property258,274, 310, 353
FIlter CRAraCtEIISICSc.eeuertirteieiteiieieetent ettt ettt ettt ettt et ettt sae b nees 7
Filter Design Parameterscovueeeeriieienieriieieeieeie sttt ettt sttt eae st et sbe e see e 11,22
Attenuation
Filter Name
Filter Type
High Cutoff Frequency. .23
High Cutoff Slope......... .23
Low Cutoff Frequency.. .22
LOW CULOTE SIOPE ..ottt ettt ettt ettt ettt saeebesaeenteenean 23
SHAIPIIESS ..ttt ettt ettt ettt ettt et et e sttt e ekt e st e bt et e bt ente bt e st e teentebeenbeneeens 22
Filter Design Screen... .. 11,14, 17, 18, 21, 22, 24, 40, 145, 219, 292, 294
FAIter NAIME ..ottt et ettt ae e eaeeeaveeeaaeenseesana e 12, 14, 21, 22
FIIter RESPOMSE........eveuiiiieieiieieeiest sttt ettt sttt ettt s b ettt saenne e 24
Linear Display26
Linear Zoom Display.... .27
Log Display28
L0 Z00m DISPIAY ...ttt ettt 29
Uit StEP DISPLAY....cviiiiiiiieiiiieee ettt 30
FIIET TYP@...etetinteeieitcitet ettt et ettt sttt ettt eb e e 14,22
FilterDesign property252,253,272,311
FilterIndeX method.........cooovviiiiiiiiiciicie e 257,274, 312
FilterName PIOPEILYc.evuiriirieieiieiieiieiertestene ettt ettt 257,274, 313
FilterParametersGet method.............cccoeeeveeviieiieeciiecieeieeee, 252,257,263,264,274,293, 314
FilterParametersSet method252,257,263, 264, 274, 293, 315

FIlteTTYPE PrOPEILY ...eveeieriiiitiieiteiieiceiestest ettt ettt s 257,274, 317
Flags property258, 274, 309, 319, 353
FUNCHIONS ...ttt ettt sa ettt et eae b sae e b
GO BITOT .ot
Graph Options................
Graph Options|Display
Graph Options|Enabled
Graph Options|History
Graph WINAOWcouiiiiiiiiiiiiinene ettt

Index 415

CRANMNEIS ...ttt ettt et e et ea e e te e et eesteeesaeeetbeeabeessaeenseesaseeseesnseessseenseanns 43

Data TIACKING ...c..eveuiiiiiiiiiirtertee ettt ettt ettt 45
ZIOOITHIIZ ...ttt ettt et e b bt bt et ettt et b e bt s bt sttt ettt et st ne 45
Group Delay......... ... 13,20, 26

Group Interface.........cevveeierinienieieeceeceee e ... 11,17, 50
GIOUPDEIAY. ...ttt ettt 288,363
GroupDElay PrOPEILY ...c.eoveuiieeiieiiiiieieeeeetee ettt sttt seenes

HAardware OVEIVIEWc.coiiiriiririiieieiteiteieste ettt ettt ettt st s ene et sae e sae
HardwareStop method

High Cutoff FTEQUENCYeoviriiiiiiiiicietneeesesteeet ettt 14,23
High Cutoff SIOPE......cueiuiiiiiriieeee ettt 14, 23
HOST CONFIGURE CONNECLOL.......ccuiiuiiiiiiieiiiiieieiiieteeiiee ettt 399
HP VEE EXAMPIES.....ceeuieiiiiiiiiniiiintcteeteiceteste ettt sttt ettt ettt st 78

iDSC 1816 External Synchronization CONNECLOTecueeeerierierierieniieieseeeeeeeieeeeneeeeenee 408
iDSC 1816 Installation

IDSC BlOCK DIaIamcc.cviiiiiiiiiiriiictcicieeste ettt e
iDSC Board Handling Precautionsc..cc.eceririnienieiiineniecieeniesteeeeee st
iDSC Board Hardware Architecture
iDSC Board Synchronization CONNECTOTc..evetreririnerenienieeereteieereeieere e sresseseeneeene 408
IDSC CLOSE ...t 68
IDSC FUNdamentalscccoiriririiiiiiiiiiic ettt 5
IDISC INIE. ettt ettt ettt b e sttt et sttt nne 65
IDISC MASL..ciiiiiiet et ettt ettt ettt ettt 69
IDSC REA ...ttt ettt sttt e et 66
Individual INtEITACE.......ccuviieeeiee e e 11,12, 17
Input Offset................
Input Offset Range
Input Parameters......
ENADIEA. ..ottt e
FIIET INAIME.etiiitiiiciecitet ettt sttt et
Group Delay....
INPUL RANGE ...t e
SAMPLE RALE.....ceeviiiiieiieiieiieieeere ettt sttt et
Input Range
Input Screen.....
Input Sources...

INPULOFESEt PIOPEILY ..cvvveiiiiiiieiiriertet ettt 256,273,323
InputOffsetRange Propertycoceeeeverierieieieininenieeeneste et 256,273, 324
InputRange property 253, 256, 270, 272, 273, 326, 327, 337
INPULTYPE PIOPEITY ...eeviiiiiiiiiiiiiiciciece e 256,273, 329
INSTALLALION ...ttt ettt e e e e aeeesbeestaeebeestaeebeeeaneenns 55, 395

416 Index

Installing iDSC Board Support for DASYLaDb........ccccoueiiiiniinininiiicieneneeeccceee e 51

Installing iDSC Board Support for HP VEE........ccccoooiiiiiiiiiiiiiiiiecnecececee e 77
Installing iDSC Board Support for MATLABcc.ccooiiiiiiniiininccceeeeseeeeeeeec e 81
Installing the Component Library243

Installing the iDSC 1816....................396
Installing the IDSC 816......cc.ciiriiiiiiiiiiieee ettt 397
Installing the iDSC Board SOftWare..........ccccoeevevieieiiininineneneceetececsic e 395,398
INEEOAUCHION. ...ttt ettt ettt ettt be e 3
Isolation .

J10 CONNECLOT ...oviiieiieiieeiecte ettt et e sb et e sae e nesae e 399
LabVIEW EXAMPIESoovviriiiiieieiieiieieeiieie sttt sttt ettt sttt ettt e st entesseensesaeenaenneas 56
LabWindows/CVI EXAMPLEcocoruiriiriiiiiiiiiiiiienescetetet sttt 74

Linear Display................ ... 15,24,26
Linear Zoom Display 15,24,27
LOG DiSPIAY ..cuetienieciiete ettt ettt st b e ettt be e te e 15, 24,28
LOg Z00m DISPIAYcoverviriiiiiiieicieierieneste ettt 15, 24, 29
Low Cutoff Frequency ...

LOW CULOFE SIOPE...eutitieiieiiieieettee sttt sttt ettt ettt beestesbeentesaeenseseeens 14,23
10T 1 () USSR UPPRRRRRPOE 108, 248
IMLASERT ..ttt ettt ettt ettt st e h e et b e et eeat e e bt sa et e bt e st enbaeeateenabeenaneetee 253
IMASEET PIOPETLY ..eeuiieiutieiieeiieeiee ettt ettt ettt e st et e st esbneeeeesareenae 248, 252,253,272, 330

Master/Slave Configuration . .108, 169, 170, 181, 182, 197, 248, 361, 362
IMALIAD ...ttt et ettt e a e b e tt et e bt et e teente st enbesaeenteenean

IMATLAB ...ttt ettt sttt be st nees
MATLAB Examples

MATLAB for iDSC Board...

MaxCount property..............

MemOryUSEd PIOPEILYcc.coveeieuieeieiieiieieriintenieteteieeie ettt sttt ettt s nene

IMELROMS ...ttt ettt ettt
MsIDscServerDisSKLOZCONTIZSEEc.cviuieiiiiriiriiieieie sttt 63
Multiple Board InStallationc..cccecevirininiiniiiiiiirerseeeccee et 401
Multiple iDSC Boards .
Nonstandard COnfiUIAtIONSccueieiiiriiirinenetet ettt ettt 399
NUM DAL ..ot 72
NYQUISE FIEQUENCY «..cnvviiiieiieiertesteee ettt 22,23,24,27,29
Object and TYPE SUMMALYcccueruiriertieieniieiereteteeteeteete e etenteeeessesssesseensesseenseseeeneas 241, 252
Object Reference

ODSOIete INTETTACEeeuiiiiiiiiiei ettt 231, 380
OnAfterNumDSCChange eVent............cocevevueieieineiirineneeeeeee e 255,273,333
OnBeforeNumDSCChange Vetcc.evierierieriinienieniierieeeenie ettt 255,273,334
ONCalibratePTOZIESS EVENL.....c..eruieiieiieiiertieierieeteetteeesteet e et e e seeebe st eteseeeneesneenee 254,273, 335
OnHardwareDelayChange event 254,273, 336
OnlnputRangeUpdate eVent..........oeevevieieieirinininenecieeeeecee e 254,273, 337
OnPinEnabledUpdate eVent...........coecveruieieriieienieie st 254,273, 338
ONSYStEMEITOT EVENT ...ceuutiiiiiiiiiiiieeieeite ettt ettt e e ea 254,273, 339
OPENF1ags PIrOPEITYccveviieiieiieieriieie ettt ettt 258,274, 320, 340, 353
OperateMode PrOPETLYceeeruieeerieeieeiieiesieeieete e etesteetesee e sreeeesaeas 248, 253,272, 330, 342

Index 417

OULPUL EXCIEALION. ...c.vtetieiieiieiieiteie ettt ettt et ettt et et e et e bt et e saeentesbeensenbeensensean 16, 32
OULPUL FILC ...ttt sttt 49
OUutputEXCItation PIrOPEILYc.coceruiriiriirierieieiieieieeenteeteste ettt aene 256, 273, 344
Package library
Physical INEITACE.c.eoueuieiiiiriircrccetce ettt 403
PinEnabled Propertyc.cccoivirerinienieieieininceesie ettt 253,272, 338, 345
PinEnabledCount PrOPEILYcoeoverieieieirininienentestentetet ettt et seeneene 253,272,346
PIinTOFIIerMap PrOPEItYccccceviriirrerienieieieieieeieneeeieste sttt eeeeieeie e saenaens 257,274, 347
Property, Method, and Event Summary....
RemoteMaster PrOPETLYc..eevuierieerieiiierieerite ettt

RUNNING PIOPEITY ...oviiiiiiiitiitieterieetet ettt

sample rate..............

Sample Rate...............

SampleRate property.............

Save and 10ad WOTKSPACESc.ceiririiriiiiiiinicicetec ettt
ScansDiscarded PrOPETLYcccceveririirierieieieiiteeeerteetesee ettt

Section 1. Introduction
Section 2. Application Software
Section 3. Programming Interfaces
Section 4. Installation and SELUPcceevverieiienieieieeee et
Server Disk Log WINAOWcocoviiiiiiiiiiiiictceceercteeeet ettt
ServerDiskLog property....
ServerDiskLogBytes......
ServerDiskLogBytes property.....
ServerDiSKLOZCONTIZGELcoueruiriiiiiiieiiritetestereeet ettt
ServerDiskLogConfigGet Method..........cccoviviriniiriiiiiiiiiinrccet e
ServerDiskLogConfigGet method... .
ServerDiskLOogCONTIZSELc.couiririiiiiiirirereee ettt
ServerDiskLogConfigSet method..........ccceeeveeieiiinienieiinen.

ServerDiskLogEnabled property..........ccoveeveeiererienieiienieeiesceie e

Several IDSC BOArdScoueiiiriiiniiiciciet ettt e
Sharpness
SNAIPNESS PLOPETLY.c.euveniverireriietieeteeetes ettt ettt ettt sttt b et be st ebe e bt sbene e

Simultaneous Sampling and Synchronization............cccecceceeverenenenenienieieieceenesese e 393

S1aVECOUNE PIOPETLY ..cuvieieeienieeiieteetieteeterte et etesteeteseeesteeaeebeseeeneeas
SlaveName method....
SPECIAl AQATESSING ...evvevieniiiieie ettt ettt ettt et e sttt et e este s bt et esseeneesbeensesseensesnean
SEACKSIZE ..ttt sttt ettt ens

StackSize property ..
Start
STATE! <.ttt ettt ettt ae s 36,37, 38
SEArtACUITINGoovvviiiiriirienienieetereeee ettt 250, 303, 381, 383, 384, 385
StartAcquiring method.................... 248,253,272, 285, 287, 321, 349, 354, 356, 358, 363, 364
Start ACqUITING MEtROM.cuiiiiiieiiiieieeee ettt sttt et sbe e see e 288
Static sensitivity............. ... 395

418 Index

StopAcquiring

StopAcquiring method

StructPrepare

StructPrepare MEthOd.ccuovuiiiiiieieieeeeee ettt ettt ettt et eeee 356
StructPrepare method............ccociviriiiininincninnccccee 253,264, 268, 272, 285, 355, 365
SEIUCTULES ..ttt ettt b e st s be st e e b s eae 112
SubVIs Referencec..cocceveveevcncnnns ...65
Synchronizing Several iDSC Boards53
SYSEEIM OPLIONS ...ttt eiiete ettt e bttt et et e e eteetesteesbesseensesseensesseensesseensesseensesseensesseens 37
SYSEEMAAAIESS ...ttt ettt ettt ettt st e st et ebesstenbeeneenbesseenbennsesseens 37
System|Board Setup Display37,41
System|Calibrate...................37,38
System|Commands Load37,38
System|Configuration LOCK.........cceviiiiiieriiiieiesiieeeee ettt 37,38
System|MemoOry DISPIAYcceeieriieieiiiieieetee ettt 37,38
System|MemOTYDISPIAYceoveriiiiieiieieiieie ettt sttt ettt et rae b be e 38
SystemErrorProcess method253, 273, 339, 366
TADIE OPLIONS.......eviieiitintetet ettt ettt ettt ettt st s e et ettt st be et eue st b 46
Table Options|DISPIAYccueviiiiiiririreecte ettt sttt 37, 47
Table Options[ENabledccociviiiriiniiiiiiiee ettt 47
Table OPtiONS[HISTOTYcc.eoviiiiiiriiniertenieee ettt s 37,47

Table WINAOWco.iviriiiiiiiiieite ettt s 35,37, 46, 47

CRANNEIS ...ttt ettt ettt ettt sttt ettt een 47
TBUITETGELEX......eiitiiiie ettt et et ere e eaveeeaae e 112,113, 137
TBUTEIGELEX tYPC ..nvieuieiieiieeiieie ettt sttt ettt et e b e 252,259, 285
TcEnabled property........... 253,273,367
TcEnabledCount property 253, 273, 369
TcMaximum property 253,273,370
TCWIAth PrOPEITY ...coveriitiriiiiieecte ettt 253,273,371
TDAPICCLISE ...ttt ettt st et ene 382,383
TDAPICCLISt ODJECT ...ttt ettt ettt sttt ettt st ae e 382

TDISC ettt et sttt 251, 261, 381
TDsc object...... .252, 253, 255, 305
TDSCGIOUP ...ttt ettt ettt ettt st ettt e s et e bt e s ab e bt e et e e sate e bt e sateebeesabeenbeeenteesaneenbeeenee 252
TDSCGIOUP ODJECT ...vventieiieiieiietiete ettt ettt sttt et ettt e bt e e teeste bt eneesseentesbeensesseensesseensesseens 255
TDscloInt64............... . 112,115, 123, 188, 252, 261, 268, 354
TDSCIOINTOA LYPE ...ttt ettt e ea 261
Testing the Installation... ...395, 398
TExternalBoard ODJECEccueiiiiiiiririiieictctceee ettt 252,256
TFilterDesign
ALECIUATION PIOPETLY ...euveeientieiietieierieetesteetesttestesteetesteetesseesesstesseensassesssesseensenseensesseenss 351
CULOTTFTEGLOW PrOPETLY ...c.veeuieiieiietieeieeteete sttt ettt ettt sttt e st sanesbeentesbeeneens 351
CUtOfTSIOPELOW PIOPEILY ...veevieiieeiietieiiete ettt ettt ettt te sttt e st et esbeeae bt enbesreenbesbeensesreens 351
SHAPNESS PIOPETLY ...vvenvieiieiieiitiete ettt ettt sttt et e bt et e tesetebeeatenseentenbeeneesseeneenseenes 351
TFIIterDesiZn ODJECKcouiriiiiieiiiiieieriieetereeeetet ettt 252,257
TFilterDesign ProPerty.......cccveeueeverueeriereenienienieeeeneeniesneneen 297,298, 299, 301, 312, 313, 317

Index 419

TFIEIrDESIZN LYPE ..cuvenvintineiieiieieeicrtet ettt sttt ettt st be sttt nne e 278

TEFIEIPAramm.....c.vecvvivieiieieceeccieeeee ettt eve e eve e ereenees 112,117, 156, 157, 186
TFIerParam tyPec.eeuveeverieiieiieie sttt sttt st seeens 252,263,314, 315
TProcSystemETrrorStdcall ..o 112,120
TransferFunctionGet method 257,274,372
TTOUDIESNOOTING.eueeiieiiieiieie ettt ettt ettt et e st e e sbeeate bt et e sbeensesaeensenseans 398
TServerDiSKLOZ ODJECE......ccuiriiiieieriieietieie ettt sttt 252,258, 280, 353
TServerDiskLogConfig........ccccvevvieienieienieieniieeeeeene 112, 115, 121, 189, 191, 261, 355, 356
TServerDiskLogCon ig tyPe.....ccueeveruerieriieieeiieieeiiete ettt 252,266, 355,356

TXDPINCONTIZ ...ttt ettt st 112,125
TXbPinConfig type. ... 252,270,377,378
UNIt SEEP DISPIAY..cuvieutiiieiirtieie ettt ettt st ettt be et saean 15, 24, 30
UnitStepGet MEhodooeiiriiiiiiiiiircc et 257,274,373
UnitStepLengthGet methodc.ccoiiiiiinininiiiieer e 257,274,374
Universal Naming CONVENTIONc.ceceeiririinieieieieinententeterenteieste st seeseseeieenesaennens 107, 247
Using an iDSC Board Module with DASYLabcccoovivininininiiiiiiinincnececeeeeee 52
Using an iDSC Board with MATLAB........cooiiiiieieeceteee ettt 82
Using More Than One iDSC Board with DASYLabccccocivinininiiiiiiiiiinecceecne 52
Using the iDSC Board with DASY Lab

Using the iDSC Board with HP VEEcccociiiiiiiiiiiiieccceeeeecse e
Using the iDSC Board with LabVIEW

Using the iDSC Board with LabWindows/CVI.......ccocvvirimininiiniiiiiiinncnesesecseeereene 74

Using the iDSC Board with MATLAB..........cccoiiiiiiiiineneeeeeeeec et 81
Warm-up and Self-Calibration.................. ... 392
WOTKSPACESvenveutenteeieeteetteteeteentesteessesteente st eneanseeteentesseensesseensesseeneeseansessesstanseeneensesseeensesseens 35
WOTKSPACES ...ttt ettt ettt ettt be ettt ea et et ne st naeneen 36
XbCalibrate method... ... 248,253,273, 375
XDENAbIed PIOPETLY......cc.ceueriiriiiiieiieiieieeienteetestee ettt ettt 253,273,376
XbPinConfigGet methodcccoveieiiiiiiinininecccceee 252, 256,270,271, 274,377
XbPinConfigSet method........c.coeoiiieiiiiiiiiininniccccee 252, 256,270,271, 274, 378
ZOOM TN it st 45
ZOOITHIIE ..ottt ettt ettt sttt ettt e b e bt et e b bt et est e bt eu e bt s bt e et et e st ebeebe s bt et b et et e st bt ebeeteebenees 42

420 Index

	iDSC Reference Manual
	Contents

	Section I. Introduction
	Introduction
	About This Document
	iDSC Fundamentals
	Filter Characteristics

	DSC Graphical Design
	Individual Interface
	Input Screen
	Filter Design Screen
	External Board Screen

	Group Interface
	DSCs
	Address
	Mode
	External Board Calibrate
	External Board Enable
	Raw Data
	Remote Master
	Server Disk Log
	Copy
	Paste

	Input Parameters
	Sample Rate
	Group Delay
	Input Range
	Filter Name
	Enabled

	Filter Design Parameters
	Filter Name
	Filter Type
	Sharpness
	Low Cutoff Frequency
	Low Cutoff Slope
	High Cutoff Frequency
	High Cutoff Slope
	Attenuation

	Filter Response
	Linear Display
	Linear Zoom Display
	Log Display
	Log Zoom Display
	Unit Step Display

	External Board Parameters
	Input Type
	Input Range
	Input Offset
	Input Offset Range
	Output Excitation

	Section II. Application Software
	DSCview
	Save and Load Workspaces
	Start & Stop
	System Options
	Configuration Window
	Graph Window
	Table Window
	Disk Log Window
	Server Disk Log Window

	Using the iDSC Board with DASYLab
	Installing iDSC Board Support for DASYLab
	Using an iDSC Board Module with DASYLab
	Running the DASYLab iDSC Board Examples
	Using More Than One iDSC Board with DASYLab
	Synchronizing Several iDSC Boards
	Special Addressing

	Using the iDSC Board with LabVIEW
	Installation
	Creating an iDSC Board Application in LabVIEW
	Running the LabVIEW iDSC Board Examples
	App01 - BASIC
	App02 - GRAPH
	App03 - LOG
	App04 - LOGVW
	App05 - DaplFFT
	App06 - DaplCC
	App07 - Disk Logging (1 iDSC)
	App08 - Disk Logging (2 iDSC with synchronization)
	App09 – A Group of iDSC

	DLL Reference
	DSCIO DLL Function Reference
	MSLAPP DLL Function Reference
	Data Format
	MslDscServerDiskLogConfigSet

	SubVIs Reference
	iDSC Init
	iDSC Read
	iDSC Close
	iDSC
	iDSC MaSl
	DiskLog
	Num Data
	Get Error

	Using the iDSC Board with LabWindows/CVI
	Running the LabWindows/CVI iDSC Board Example
	Creating an iDSC Board Application in LabWindows/CVI

	Using the iDSC Board with HP VEE
	Installing iDSC Board Support for HP VEE
	Running the HP VEE iDSC Board Examples
	APP01.VEE
	APP02.VEE
	APP03.VEE
	APP04.VEE

	Creating an iDSC Board Application in HP VEE
	Object Reference
	iDSC Init
	iDSC Data
	iDSC Close

	Using the iDSC Board with MATLAB
	Installing iDSC Board Support for MATLAB
	Using an iDSC Board with MATLAB
	Running the MATLAB iDSC Board Examples
	DLL MEX Reference

	Section III. Programming Interfaces
	DSCIO DLL Programmer’s Interface
	DSCIO Interface Examples
	Visual Basic Examples
	Dvm.vbp
	BinLog.vbp
	LoadSave.vbp
	C/C++ Console Examples
	BinLog.cpp
	TxtLog.cpp
	LoadSave.cpp

	Creating a DSCIO Interface Application
	Universal Naming Convention
	Master/Slave Configuration
	DAPL Support
	Writing DAPL
	Using the DAPL Interface

	Structure Summary
	TBufferGetEx
	TDscIoInt64
	TFilterParam
	TProcSystemErrorStdcall
	TServerDiskLogConfig
	TXbPinConfig

	Function Summary
	DscAddressGet
	DscAddressSet
	DscBufferAvail
	DscBufferGet
	DscBufferGetEnabledGet
	DscBufferGetEnabledSet
	DscBufferGetEx
	DscCalibrate
	DscCommandsLoad
	DscConfigDialogOptionsGet
	DscConfigDialogOptionsSet
	DscConfigDialogShow
	DscConfigRead
	DscConfigWrite
	DscConfigWriteSize
	DscDaplTextGet
	DscDaplTextLengthGet
	DscDaplTextSet
	DscFilterIndex
	DscFilterParametersGet
	DscFilterParametersSet
	DscGroupDelay
	DscHandleClose
	DscHandleOpen
	DscHardwareStop
	DscIdGet
	DscIdSet
	DscInputRangeGet
	DscInputRangeSet
	DscLastErrorTextGet
	DscLastErrorTextSet
	DscMasterGet
	DscMasterSet
	DscMemoryUsed
	DscOnSystemErrorSet
	DscOperateModeGet
	DscOperateModeSet
	DscPinEnabledCount
	DscPinEnabledGet
	DscPinEnabledSet
	DscPinToFilterMapGet
	DscPinToFilterMapSet
	DscRemoteMasterGet
	DscRemoteMasterSet
	DscRunning
	DscSampleRateGet
	DscSampleRateSet
	DscScansDiscarded
	DscServerDiskLogBytes
	DscServerDiskLogConfigGet
	DscServerDiskLogConfigSet
	DscServerDiskLogEnabledGet
	DscServerDiskLogEnabledSet
	DscServerDiskLogFileNameGet
	DscServerDiskLogFileNameSet
	DscSlaveCount
	DscSlaveHandle
	DscStartAcquiring
	DscStopAcquiring
	DscStructPrepare
	DscSystemErrorProcess
	DscTcEnabledCount
	DscTcEnabledGet
	DscTcEnabledSet
	DscTcMaximum
	DscTcWidth
	DscTransferFunctionGet
	DscUnitStepGet
	DscUnitStepLengthGet
	DscXbCalibrate
	DscXbEnabledGet
	DscXbEnabledSet
	DscXbPinConfigGet
	DscXbPinConfigSet
	DscGroupAddOne
	DscGroupConfigDialogShow
	DscGroupConfigRead
	DscGroupConfigWrite
	DscGroupConfigWriteSize
	DscGroupCount
	DscGroupDeleteOne
	DscGroupDsc
	DscGroupHandleClose
	DscGroupHandleOpen

	Obsolete Interface
	DAPL Custom Command Support
	Using the DAPL custom command interface
	DscDaplCCDownloadGet
	DscDaplCCDownloadSet
	DscDaplCCListGet
	DscDaplCCListLengthGet
	DscDaplCCListSet
	DscDaplCCStackSizeGet
	DscDaplCCStackSizeSet

	DSC Component Programmer’s Interface
	DSCC Interface Examples
	BinLog.dpr
	Dvm.dpr
	Graph.dpr

	Installing the Component Library
	Delphi 5, Delphi 6, Delphi 7
	C++Builder 5, C++Builder 6

	Creating a DSCC Interface Application
	Universal Naming Convention
	Master/Slave Configuration
	DAPL Support
	Writing DAPL
	Using the DAPL Interface

	Object and Type Summary
	TDsc object
	TDscGroup object
	TExternalBoard object
	TFilterDesign object
	TServerDiskLog object
	TBufferGetEx type
	TDscIoInt64 type
	TFilterParam type
	TServerDiskLogConfig type
	TXbPinConfig type

	Property, Method, and Event Summary
	AddOne method
	Address property
	Attenuation property
	BlockSize property
	BufferAvail method
	BufferGet method
	BufferGetEnabled property
	BufferGetEx method
	Calibrate method
	CommandsLoad method
	ConfigDialogOptions property
	ConfigDialogShow method
	ConfigDialogShow method
	Count property
	CutoffFreqHigh property
	CutoffFreqLow property
	CutoffSlopeHigh property
	CutoffSlopeLow property
	DaplText property
	DeleteOne method
	Dsc property
	ExternalBoard property
	FileFlagsAttributes property
	FileName property
	FileShareMode property
	FilterDesign property
	FilterIndex method
	FilterName property
	FilterParametersGet method
	FilterParametersSet method
	FilterType property
	Flags property
	GroupDelay property
	HardwareStop method
	InputOffset property
	InputOffsetRange property
	InputRange property
	InputRange property
	InputType property
	Master property
	MaxCount property
	MemoryUsed property
	OnAfterNumDscChange event
	OnBeforeNumDscChange event
	OnCalibrateProgress event
	OnHardwareDelayChange event
	OnInputRangeUpdate event
	OnPinEnabledUpdate event
	OnSystemError event
	OpenFlags property
	OperateMode property
	OutputExcitation property
	PinEnabled property
	PinEnabledCount property
	PinToFilterMap property
	RemoteMaster property
	Running property
	SampleRate property
	ScansDiscarded property
	ServerDiskLog property
	ServerDiskLogBytes property
	ServerDiskLogConfigGet method
	ServerDiskLogConfigSet method
	ServerDiskLogEnabled property
	Sharpness property
	SlaveCount property
	SlaveName method
	StartAcquiring method
	StopAcquiring method
	StructPrepare method
	SystemErrorProcess method
	TcEnabled property
	TcEnabledCount property
	TcMaximum property
	TcWidth property
	TransferFunctionGet method
	UnitStepGet method
	UnitStepLengthGet method
	XbCalibrate method
	XbEnabled property
	XbPinConfigGet method
	XbPinConfigSet method

	Obsolete Interface
	DAPL Custom Command Support
	Using the DAPL custom command interface
	TDaplCCList object
	DaplCCList property
	Download property
	StackSize property

	Section IV. Installation and Setup
	iDSC Board Hardware Architecture
	Hardware Overview
	iDSC Board Block Diagram
	Warm-up and Self-Calibration
	Isolation
	Simultaneous Sampling and Synchronization

	Installation
	iDSC Board Handling Precautions
	Installing the iDSC€1816
	System Hardware Requirements
	Installation Steps

	Installing the iDSC€816
	System Hardware Requirements
	Standard Configurations
	Installation Steps

	Several iDSC Boards
	Installing the iDSC Board Software
	Testing the Installation
	Troubleshooting the iDSC€1816

	Advanced Installation Options
	Nonstandard Configurations
	Multiple Board Installation

	Physical Interface
	Input/Output Connector
	Analog Inputs
	iDSC Board Synchronization Connector
	iDSC€1816 External Synchronization Connector

	Index

